Class $10^{\text {th }}$
Subject:-Maths
Q1. Prove that $5-\frac{2}{7} \sqrt{3}$ is not a rational number.
Q2.If HCF of 210 and 55 is expressible in the form of $210 \times 5+55 \mathrm{y}$, then find y .
Q3.If 1 is zero of polynomial $\mathrm{P}(\mathrm{x})=a x^{2}-3(a-1) x-1$, find a.
Q4.If α and β are zeroes of polynomial $3 x^{2}+2 x-6$, then find the value of (a) $\alpha^{2}+\beta^{2}$ (b) $\alpha^{3}+\beta^{3}$ (c) $\frac{1}{\alpha}+\frac{1}{\beta}$

Q5.For what value of ' a ' do the pair of linear equations $a x+y=a^{2}$ and $x+$ $a y=1$, have (a) no solution (b) infinitely many solutions.

Q6.Aman takes two hour more than Nishant to cover a distance of 30km. If Aman doubles his speed, he would have taken 1 hour less than Nishant. Find speed of Aman and Nishant.

Q7 Find a relation between X and Y if the area of triangle formed by the points $(\mathrm{x}, \mathrm{y}),(1,2)$ and $(7,0)$ is 7 square unit.

Q8 IF the points $\mathrm{A}(1,-2), \mathrm{B}(-4,-3), \mathrm{C}(\mathrm{x},-2)$ and $\mathrm{D}(2,3)$ form a parallelogram, find the value of x .
Q9 Prove that $(\operatorname{Sin} \mathrm{A}+\operatorname{Cosec} \mathrm{A})^{2}+(\operatorname{Cos} \mathrm{A}+\operatorname{Sec} \mathrm{A})^{2}=7+\tan ^{2} \mathrm{~A}+\operatorname{Cot}^{2} \mathrm{~A}$
Q10IF SecA+TanA=P, prove that $\operatorname{Sin} A=P^{2}-1 / P^{2}-1$
Q11 Two men standing on either side of a cliff 90 m high, observes the angle of elevation of the top of the cliff to be 30and 60respectively.Find the distance between the two men.

Q12Two Poles of equal heights are standing opposite to each other on either side of the road, which is 80 m wide. From a point between them on the road, the angle
Of elevation of the top of the poles are 60and 30.Find the height of the poles and distance of the point from the poles.
Q13.In a right angled triangle ABC , angle $\mathrm{C}=90^{\circ}$ and D, E and F are three points on BC such that they divide it in four equal parts. Prove that:
$8\left(\mathrm{AF}^{2}+\mathrm{AD}^{2}\right)=11 \mathrm{AC}^{2}+5 \mathrm{AB}^{2}$

Q14. Prove that the ratio of the areas of two similar triangles is equal to the ratio of their corresponding sides.

Q15. The sum of n terms of an A.P. is $\left(2 n+3 n^{2}\right)$.Determine the A.P. and find its $r^{\text {th }}$ term.

Q16. If the sum of first m terms of an A.P. is n and the sum of first n terms is m, then show that the sum of its $(m+n)$ terms is $-(m+n)$.

Q17. Find the value of p for which the following quadratic equation has two equal roots: $(p-12) x^{2}+2(p-12) x+1=0$.

Q18. A sailor can row a boat 8 km downstream and return back to the starting point in 1 hour 40 mints. If the speed of the stream is 2 km per hour, find the speed of the boat in still water.

Q19 In following Fig, a quadrilateral ABCD is drawn to circumscribe a circle, with centre 0 , in such a way that the sides $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA touch the circle at the points $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S respectively. Prove that. $\mathrm{AB}+$ $C D=B C+D A$.

Q20 In Fig, from an external point P, two tangents PT and PS are drawn to a circle with centre O and
Radiusr. If $\mathrm{OP}=2 \mathrm{r}$, show that $\square \mathrm{OTS}=\square \mathrm{OST}=30^{\circ}$.

Q21 In Fig. 7, two equal circles, with centre's O and O^{\prime}, touch each other at X.OO' produced meets the circle with centre O^{\prime} at A . AC is tangent to the circle with centre 0 , at the point C . O'D is perpendicular to AC. Find the value of DO/CO.

Q22. Draw a circle of radius 6 cm . from a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.
Q23. In fig.4, 0 is the centre of a circle such that diameter $\mathrm{AB}=13 \mathrm{~cm}$ and $\mathrm{AC}=12$ cm . BC is joined. FIND the area of the shaded region. (Take $\square=3.14$)
Q 24 - One says "Give me a hundred, friend! I shall then become twice as rich as you are". The other replies," If you give me 10, I shall be 6 time as rich as you". How much each has?

Q 25 A number x is selected at random from the numbers 1, 2,3 and 4. Another number y is selected at random from the number 1, 4,9 and 16 . Find the probability that the product of $\mathrm{x} \& \mathrm{y}$ is less than 16

Answer Key

Solution 1.Let $5-\frac{2}{7} \sqrt{3}$ is a rational
$\mathrm{a}-5=-\frac{2}{7} \sqrt{3}$
(a-5) $\times \frac{-7}{2}=\sqrt{3}$
$\frac{-7 a}{2}+\frac{35}{2}=\sqrt{3}$
$\frac{-7 a+35}{2}=\sqrt{3}$
Now a is rational number,
$\therefore \frac{-7 a+35}{2}$ is a rational
Or $\sqrt{3}$ is a rational number
Which is false, $\because \sqrt{3}$ is not a rational number.
Hence our supposition is wrong
$\therefore 5-\frac{2}{7} \sqrt{3}$ is not a rational number.
Solution2. $\mathrm{a}=210, \mathrm{~b}=55, \mathrm{a}>b$
Using Euclid's division Lemma to 210 and 55, we get

$$
210=55 \times 3+45
$$

Now remainder $45 \neq 0$, apply Euclid's division lemma to 55 and 45
Here $\mathrm{a}=55, \mathrm{~b}=45$

$$
55=45 \times 1+5
$$

Again remainder $10 \neq 0$, apply Euclid's division lemma to 45 and 10 here $a=45, b=10$

$$
45=10 \times 4+5
$$

Once again remainder $5 \neq 0$, apply Euclid's division lemma to 10 and 5
Here, $a=10, b=5$

$$
10=5 \times 2+0
$$

Here remainder $=0$

$$
\therefore \quad \mathrm{HCF}=5
$$

Now $5=210 \times 5+55 y$
$55 y=5-1050=-1045$

$$
y=-19
$$

Solution3. As 1 is zero $\mathrm{P}(\mathrm{x})$

$$
\begin{aligned}
& \quad \mathrm{P}(1)=0=a^{2} \\
& a(1)^{2}-3(\mathrm{a}-1) \times 1-1=0 \\
& \mathrm{a}-3 \mathrm{a}+3-1=0 \\
& -2 \mathrm{a}+2=0 \\
& -2 \mathrm{a}=-2 \\
& \therefore \mathbf{a}=\mathbf{1}
\end{aligned}
$$

Solution4. $\mathrm{P}(\mathrm{x})=3 x^{2}+2 \mathrm{x}-6$
Here, $a=3, b=2, c=-6$
$\alpha+\beta=\frac{-b}{a}=\frac{-2}{3}, \alpha \beta=\frac{c}{a}=\frac{-6}{3}=-2$
(a). $\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=\left(\frac{-2}{3}\right)^{2}-2(-2)=\frac{4}{9}+4=\frac{4+36}{9}=\frac{40}{9}$
(b) $\cdot \alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)=\left(\frac{-2}{3}\right)^{3}-3(-2)\left(\frac{-2}{3}\right)=\frac{-8}{27}-\frac{-12}{3}$
$=$ $\frac{-126}{27}$
(c) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{\frac{-2}{3}}{-2}=\frac{-2}{3} \times \frac{-1}{2}=\frac{1}{3}$

Solution5. $a x+y=a^{2} ; x+a y=1$

$$
\text { Here, } \begin{gathered}
a_{1}=a, b_{1}=1, c_{1}=a^{2} \\
a_{2}=1, b_{2}=a, c_{2}=1
\end{gathered}
$$

(a) For no solution. $\frac{\mathrm{a} 1}{\mathrm{a} 2}=\frac{\mathrm{b} 1}{\mathrm{~b} 2} \neq \frac{\mathrm{c} 1}{\mathrm{c} 2}$

$$
\frac{\mathrm{a}}{1}=\frac{1}{\mathrm{a}} \neq \frac{a^{2}}{1}
$$

Or $a^{2}=1$
Or a $= \pm \sqrt{1}$
Or a = +1, -1
Also, $\frac{1}{\mathrm{a}} \neq \frac{a^{2}}{1}$
Or, $a^{3} \neq 1$
Or, $a^{3} \neq 1^{3}$

Or, $\mathbf{a} \neq 1$

(b) For infinitely many solution

$$
\begin{aligned}
\frac{\mathrm{a} 1}{\mathrm{a} 2} & =\frac{\mathrm{b} 1}{\mathrm{~b} 2}=\frac{\mathrm{c} 1}{\mathrm{c} 2} \\
\text { or } \frac{a}{1} & =\frac{1}{\mathrm{a}}=\frac{a^{2}}{1} \\
\frac{\mathrm{a}}{1} & =\frac{1}{\mathrm{a}}
\end{aligned}
$$

$$
\text { Or } a^{2}=1
$$

$$
\text { Or } \mathrm{a}= \pm \sqrt{1}
$$

$$
\text { Or } \mathrm{a}=+1,-1
$$

Also, $\frac{1}{\mathrm{a}}=\frac{a^{2}}{1}$
Or, $\mathrm{a}^{3}=1$
Or, $\mathrm{a}^{3}=1^{3}$
Or, $\mathbf{a}=1$

Hence $\mathbf{a}=1$

Solution6.

Let speed of Aman is $=x \mathrm{~km} / \mathrm{h}$
And speed of Nishant $=y \mathrm{~km} / \mathrm{h}$
Distance $=30 \mathrm{~km}$
Time taken by Aman $=\mathrm{T}_{1}=\frac{30}{x} \mathrm{~h}$
Time taken by Nishant $=\mathrm{T}_{2}=\frac{30}{y} \mathrm{~h}$
According to $1^{\text {st }}$ condition,
$\frac{30}{x}-\frac{30}{y}=2$
$2^{\text {nd }}$ condition
Speed of Aman $=2 x \mathrm{~km} / \mathrm{h}$
Time taken by Aman $=\frac{30}{2 x} \mathrm{~h}$
Then, $\frac{30}{2 x}-\frac{30}{y}=-1$
Let $\frac{1}{x}=\mathrm{u}$, and $\frac{1}{y}=\mathrm{v}$
From eq. $1,30 u-30 v=2$
From eq. 2, $15 u-30 v=-1$
Subtract (4) from (3)

$$
\begin{gathered}
30 u-30 v=2 \\
+15 u-30 v=-1 \\
-\quad+ \\
\hline 15 u=3
\end{gathered}
$$

Or $\mathrm{u}=\frac{1}{5}$
Put u in (3), we get
$30\left(\frac{1}{5}\right)-30 v=2$
Or, $-30 \mathrm{v}=2-6$
Or, $-30 \mathrm{v}=-4$
Or, $\mathrm{v}=\frac{2}{15}$
Now $u=\frac{1}{5}$

$$
\frac{1}{x}=\frac{1}{5}
$$

Or $\mathrm{x}=5 \mathrm{~km} / \mathrm{h}$

$$
\begin{gathered}
\mathrm{v}=\frac{2}{15} \\
\frac{1}{y}=\frac{2}{15}
\end{gathered}
$$

Or $\mathrm{y}=\frac{15}{2}=7.5 \mathrm{~km} / \mathrm{h}$

Solution 7 Area of triangle=7square unit

$$
\begin{aligned}
& 1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]=7 \\
& 1 / 2[x(2-0)+1(0-y)+7(y-2)]=7 \\
& {[2 x-y+7 y-14]=14} \\
& 2 x+6 y-14=14 \\
& 2 x+6 y-28=0 \\
& x+3 y-14=0
\end{aligned}
$$

Solution 8)M id point of $\mathrm{BD}=\frac{2-4}{2}, \frac{3-3}{2}=(-1,0)$
Mid point of $\mathrm{AC}=\left\{\frac{x+1}{2}, \frac{2-2}{2}\right\}=\left(\frac{x+1}{2}, 0\right)$
$D(2,3) \quad C(x,-2)$
Mid point of $B D=M$ id point of $A C$

$$
\begin{aligned}
& (-1,0)=\left(\frac{X+1}{2}, 0\right) \\
& \frac{X+1}{2}=-1
\end{aligned}
$$

$X=-3$
Solution 9) $\operatorname{Sin}^{2} A+\operatorname{Cosec}^{2} A+2 \operatorname{Sin} A \cdot \operatorname{Cosec} A+\operatorname{Cos}^{2} A+\operatorname{Sec}^{2} A+2 \operatorname{Cos} A \cdot \operatorname{Sec} A$ $1+2+2+\operatorname{Cosec}^{2} A+\operatorname{Sec}^{2} A$
$5+1+\operatorname{Cot}^{2} A+1+\operatorname{Tan}^{2} A$
$7+\operatorname{Tan}^{2} \mathrm{~A}+\operatorname{Cot}^{2} \mathrm{~A}$.
Solution 10) $\operatorname{Sec} A+T a n A=P$
$\frac{1}{\cos A}+\frac{\operatorname{Sin} A}{\operatorname{Cos} A}=P \quad, 1+\operatorname{Sin} A=P \cos A$ (Squaring both side)

Mid point of $\mathrm{AC}=\left\{\frac{x+1}{2}, \frac{2-2}{2}\right\}=\left(\frac{x+1}{2}, 0\right)$
D(2,3)
C(x,-2)
Mid point of $\mathrm{BD}=$ Mid point of AC

$$
(-1,0)=\left(\frac{X+1}{2}, 0\right)
$$

$\frac{x+1}{2}=-1$
B(-4,-2)
$X=-3$
$\operatorname{Sin}^{2} \mathrm{~A}+\operatorname{Cosec}^{2} \mathrm{~A}+2 \operatorname{Sin} \mathrm{~A} \cdot \operatorname{Cosec} \mathrm{~A}+\operatorname{Cos}^{2} \mathrm{~A}+\operatorname{Sec}^{2} \mathrm{~A}+2 \operatorname{Cos} \mathrm{~A} \cdot \operatorname{Sec} \mathrm{~A}$
$1+2+2+\operatorname{Cosec}^{2} \mathrm{~A}+\operatorname{Sec}^{2} \mathrm{~A}$
$5+1+\operatorname{Cot}^{2} \mathrm{~A}+1+\operatorname{Tan}^{2} \mathrm{~A}$
$7+\operatorname{Tan}^{2} \mathrm{~A}+\operatorname{Cot}^{2} \mathrm{~A}$.
$\operatorname{Sec} \mathrm{A}+\mathrm{TanA}=\mathrm{P}$
$\frac{1}{\cos A}+\frac{\sin A}{\cos A}=\mathrm{P} \quad, 1+\operatorname{Sin} \mathrm{A}=\mathrm{P} \cos \mathrm{A}$ (Squaring both side)
$(1+\sin \mathrm{A})^{2}=\mathrm{P}^{2} \cos ^{2} \mathrm{~A},(1+\operatorname{Sin} \mathrm{A})^{2}=\mathrm{P}^{2}(1+\operatorname{Sin} \mathrm{A})(1-\operatorname{Sin} \mathrm{A})$
$1+\operatorname{Sin} A=P^{2}-P^{2} \operatorname{Sin} A, \operatorname{Sin} A+P^{2} \operatorname{Sin} A=P^{2}-1, \operatorname{Sin} A\left(1+p^{2}\right)=p^{2}-1$
$\operatorname{Sin} \mathrm{A}=\frac{P 2-1}{1+P 2}$
Solution11) Let AB be the cliff and two men are standing at P and Q .

$$
\mathrm{AB}=90,<\mathrm{APB}=30^{\circ} \text { and } \angle \mathrm{AQB}=60^{\circ}
$$

In right triangle $\mathrm{ABP}, \frac{A P}{B P}=\tan 30^{\circ}$

$$
\frac{90}{B P}=\frac{1}{\sqrt{3}}, \mathrm{BP}=90 \sqrt{ } 3 \mathrm{~m}
$$

In right triangle $A B Q, \frac{A B}{B Q}=\operatorname{Tan} 60^{\circ}, \frac{90}{B Q}=\sqrt{ } 3, B Q=\frac{90}{\sqrt{3}} \mathrm{~m}$

$\mathrm{PQ}=\mathrm{BP}+\mathrm{BQ}=90 \sqrt{ } 3+\frac{90}{\sqrt{3}}=\frac{360}{\sqrt{3}}=120 \sqrt{3}$

Solution12) In right triangle $A B P, \frac{A B}{B P}=\tan 60^{\circ}$ C

$$
\begin{aligned}
& \frac{h}{x}=\sqrt{3}, \mathrm{~h}=\sqrt{3} x, \text { In right triangle CDP } \\
& \frac{\sqrt{3} x}{80-x}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

h

$$
\begin{array}{lllll}
3 \mathrm{x}=80-\mathrm{x}, 4 \mathrm{x}=80, \mathrm{x}=20,80-\mathrm{x}, 80-20=60 . \\
\mathrm{h}=\sqrt{3 x}, \mathrm{~h}=20 \sqrt{3}
\end{array} \quad \begin{gathered}
\text { B } \quad \mathrm{X} \\
\hline
\end{gathered}
$$

Solution 13Proof: In $\triangle \mathrm{ABC}$, angle $\mathrm{C}=90^{\circ}$

$$
\begin{align*}
& \mathrm{AF}^{2}=\mathrm{AC}^{2}+\mathrm{FC}^{2} \\
& \mathrm{AF}^{2}=\mathrm{AC}^{2}+(\mathrm{BC} / 4)^{2} \\
& 16 \mathrm{AF}^{2}=16 \mathrm{AC}^{2}+\mathrm{BC}^{2} \tag{1}
\end{align*}
$$

In $\triangle \mathrm{ACD}$,

$$
\begin{align*}
& \mathrm{AD}^{2}=\mathrm{AC}^{2}+\mathrm{CD}^{2} \\
& 16 \mathrm{AD}^{2}=16 \mathrm{AC}^{2}+9 \mathrm{BC}^{2} \ldots \ldots . . .(2 \tag{2}\\
& 8\left(\mathrm{AC}^{2}+\mathrm{AD}^{2}\right)=11 \mathrm{AC}^{2}+5 \mathrm{AB}^{2}
\end{align*}
$$

Solution 14By similarity, $\underline{\operatorname{ar}(\mathrm{ABC})}=\underline{\mathrm{AB} 2}=\underline{\mathrm{BC} 2}=\underline{\mathrm{AC} 2}$.

$$
\operatorname{Ar}(\mathrm{DEF}) \quad \mathrm{DE} 2 \quad \mathrm{EF} 2 \quad \mathrm{DF} 2
$$

Solution 15A.P. is 5,11,17 \qquad and rth term is $6 \mathrm{r}-1$.

Solution 16 Let the A.P is $a, a+d, a+2 d, \ldots .$.

$$
\begin{aligned}
& \mathrm{m} / 2(2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d})=\mathrm{n} \\
& \mathrm{n} / 2(2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d})=\mathrm{m}
\end{aligned}
$$

$$
\text { after subtracting, } 2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=-2
$$

$$
S_{m+n}=m+n / 2(2 a=(m+n-1) d)
$$

$$
=\mathrm{m}+\mathrm{n} / 2(-2)=-(\mathrm{m}+\mathrm{n}) .
$$

Solution 17For equal roots, $D=b^{2}-4 a c$

$$
\mathrm{P}=14 .
$$

Solution 18 Let the speed of the boat in still water be $\mathrm{x} \mathrm{km} / \mathrm{hr}$.

$$
\begin{aligned}
& 8 / x+2 \quad+\quad 8 / x-2=100 / 60 \\
& 48 x=5 x^{2}-20 \\
& 5 x^{2}-50 x+2 x-20=0 \\
& (x-10)(5 x+2)=0 \\
& X=10 \text { or } \quad x=-2 / 5
\end{aligned}
$$

So,speed of the boat in atill water is $10 \mathrm{~km} / \mathrm{hr}$.

Solution 19. As we know that tangent from same external points are equal
SD = DR ...(1)
$\mathrm{QB}=\mathrm{BP} . . .(3)$
$\mathrm{AS}=\mathrm{AP} . .$. (4)
Adding equation (1), (2), (3) \& (4)
$\mathrm{SD}+\mathrm{CQ}+\mathrm{QB}+\mathrm{AS}=\mathrm{DR}+\mathrm{CR}+\mathrm{BP}+\mathrm{AP}$
$A D+B C=A B+D C$ Hence proved
Solution 20 In \square OTP
$\mathrm{OT}=\mathrm{r}, \mathrm{OP}=2 \mathrm{r}$ [Given]
OTP $=90^{\circ}$ [radius is perpendicular to tangent at the pair of contact]

Let $\square \mathrm{TPO}=$
$\sin \square=\frac{O T}{O P}=\frac{1}{2}$
$\square \square \square=30^{\circ}$
\square In $\square \mathrm{TOP} \square \mathrm{TOP}=60^{\circ}$ [By angle sum property]
$\square \square \mathrm{TOP}=\square \square \mathrm{SOP}$ [As \square 's are congruent]
$\square \square \square \square$ SOP is also 60°
$\square \square \square \square \mathrm{TOS}=120^{\circ} \mathrm{In} \square \mathrm{OTS}$ as $\mathrm{OT}=\mathrm{OS} \square[\square \square \mathrm{OST}=\square \square \mathrm{OTS}]$
$\square \square \mathrm{OTS}+\square \square \mathrm{OST}+\square \square \mathrm{SOT}=180 \square 2 \square \square \mathrm{OST}+120=180^{\circ}$
$\square \square \square \square \mathrm{OTS}+\square \square \mathrm{OST}=30^{\circ}$

Solution 21 Let $\mathrm{AO}^{\prime}=\mathrm{OX}^{\prime}=\mathrm{XO}=\mathrm{r}$
Radius is always perpendicular to tangent, $\square \square \mathrm{ACO}=90^{\circ}$
In $\square \mathrm{ADO}$ and $\square \mathrm{ACO}$
$\square \mathrm{DAO}^{\prime}=\square \mathrm{CAO}$ [Common]
$\square \mathrm{ADO}^{\prime}=\square \mathrm{ACO}\left[\right.$ each $\left.90^{\circ}\right]$
\square By AA similarity criteria
$\square \mathrm{ADO}^{\prime} \sim \square \mathrm{ACO}$
Therefore $\frac{D O}{C O}=\frac{R}{3 R}=\frac{1}{3}$

Draw a circle of radius 6 cm . From a point 10 cm away from its centre, construct the pair of tangents to the circle and measure their lengths.

Solution:

Solution 22.

Steps of construction

1. Draw a line segment of length $A B=10 \mathrm{~cm}$. Bisect $A B$ by constructing a perpendicular
bisector of $A B$. Let M be the mid-point of $A B$.
2. With M as centre and $A M$ as radius, draw a circle. Let it intersect the given circle at the points P and Q .
3. Join $P B$ and $Q B$. Thus $P B$ and $Q B$ are the required two tangents.

Solution 23


```
AB
# 169= BC }\mp@subsup{}{}{2}+14
25= BC'
BC=5
Area of shaded region = Area of semicircle
-Area of }\triangleAB
= 吘
= \frac{1}{2}[3.14 \times\frac{13}{2}\times\frac{13}{2}]-(5\times12)
= \frac{1}{2}}(132.665-60
=36.3325 cm
```

Solution 24 Let the amount of their respective capital be Rs x \& Rs y Therefore according to given condition
$\mathrm{x}+100=2(\mathrm{y}-100)$
$x-2 y=-300$
and $6(x-10)=y+10$
or $6 x-y=70$

$$
\begin{align*}
& x-2 y=-300 \tag{2}\\
& +12 x-2 y=140 \\
& -\quad+\quad- \\
& \hline-11 x=-440
\end{align*}
$$

Or $\mathrm{x}=40$
Similarly y $=170$
Solution25 :- $\quad P(x)=1 / 4$
$\mathrm{P}(\mathrm{y})=1 / 4$
$P(x) \cdot P(y)=1 / 4 \times 1 / 4=1 / 16$ which is less than 16

