DELHI PUBLIC SCHOOL, JAMMU. Assignment Pre-board –I(2018-2019)

Sub: Chemistry Class-XII

Section-A

(1 mark)

- 1. Define activation energy.
- 2. CO (g) and H_2 (g) react to give different products in the presence of different catalyst. Which ability of the catalyst is shown by these reactions?
- 3. Why is copper matte put in silica lined converter?
- 4. Write the coordination number and oxidation state of Platinum in the complex [Pt $(en)_2Cl_2$].
- 5. Out of chlorobenzene and benzyl chloride, which one gets easily hydrolysed by aqueous NaOH and why?
- 6. Why is aniline acylated before its nitration?
- 7. Define glcosidic linkage?
- 8. Why are rubbers called elastomers?
- 9. What is tincture of iodine?

Section –B

(2 mark)

- 1. Write the structure of an isomer of compound C_4H_9Br which is most reactive towards S_N 1 reaction.
- 2. Write the state of hybridization, shape and IUPAC name of the complex $[CoF_6]^{3-}$. (Atomic no. of Co =27)
- 3. Describe the role of the following:
 - i) CO in the purification of Nickel.
 - ii) NaCN in the froth floatation process.
- 4. Define the following terms:
 - i) Aerosol
 - ii) Coagulation of colloids
- 5. A first order reaction takes 40 min for 30% decomposition. Calculate $(t_{1/2})$ for this reaction. (Given, log 1.428 = 0.1548)
- 6. The edge of the face centred cubic unit cell of aluminium is 404 pm. Calculate the radius of aluminium atom.
- 7. i) What changes occurs when AgCl is doped with CdCl₂?

Section - C

- ii) What type of semiconductor is produced when silicon is doped with boron?
- 8. a) Why is Bithional added to soap?
 - b) Give the composition of Dettol.
- 9. Arrange the following polymers in increasing order of their intermolecular forces.
 - i) Nylon6,6, Buna-S, polythene
 - ii) Nylon6, neoprene, PVC
- 10. Give a broad classification of vitamins?
- 11. How can you convert an amide into amine having one carbon less than the starting compound? Name the reaction.

(3 mark)

- 1. An element X (molar mass = 60 g mol⁻¹) has a density of 6.23 g cm⁻³. Identify the type of cubic unit cell, if the edge length of the unit cell is 4×10^{-8} cm.
- 2.Calculate the freezing point of a solution containing 18 g of glucose, C₆H₁₂O₆ and 68.4 g of sucrose ,C₁₂H₂₂O₁₁ in 200g of water. The freezing point of pure water is 273K and K_f for water is 1.86 K kg mol⁻¹.
 3.The value of A_m⁰ of Al₂(SO₄)₃ is 858 S cm² mol⁻¹, while λ⁰ (SO₄²⁻) is 160 Scm² mol⁻¹. Calculate the limiting
- 3. The value of Λ_m^{0} of Al₂(SO₄)₃ is 858 S cm² mol⁻¹, while λ^0 (SO₄²⁻) is 160 Scm² mol⁻¹. Calculate the limiting ionic conductivity of Al³⁺.
- 4. A first order reaction is 50% completed in 40 minutes at 300K and in 20 minutes at 320 K. Calculate the activation energy of the reaction. (Given: log 2 =0.3010, log 4 = 0.6021, R =8.314 JK-1 mol-1).

- 5. What happens when?
 - i) A freshly prepared precipitate of $Fe(OH)_3$ is shaken with a small amount of $FeCl_3$ solution?
 - ii) Persistent dialysis of a colloidal solution is carried out?
 - iii)An emulsion is centrifuged?
- 6. Write the chemical reactions involved in the process of extraction of Gold. Explain the role of dilute NaCN and Zn in this process.
- 7. i) Write the formula of the following coordination compound:

Iron (III) hexacyanoferrate (II)

- ii) What type of isomerism is exhibited by the complex $[Co (NH_3)_5Cl]SO_4?$
- iii)Why low spin tetrahedral complexes are rarely observed?
- 8. i) Write the structure of the product when chlorobenzene is treated with methyl chloride in the presence of sodium metal and dry ether.
- ii) Write the structure of alkene formed by dehydrohalogenation of 1-bromo-1-methylcyclohexane with alcoholic KOH.
- 9.. Explain the following with an example for each:
 - i) Kolbe's reaction
 - ii) Reimer-Tiemann reaction
 - iii) Williamson ether synthesis
- 10 .a) State the following laws:
 - i) Faraday's first law of electrolysis
 - ii) Kohlrausch's law of independent migration of ions.
 - b) Define fuel cell.
- 11. With the help of suitable diagrams, on the basis of band theory, explain the difference between
 - i) A conductor and an insulator
 - ii) A conductor and a semiconductor.
- 12. Give one chemical test to distinguish between the following pairs of compounds.
 - i) Methylamine and dimethylamine
 - ii) Ethylamine and aniline
 - iii) Aniline and benzyl amine
- 13. Give a short note on zwitter ion.
- 14. Draw the structures of the monomers of the following polymers:
 - i) Polythene ii) PVC iii) Teflon
- 15. What are the following substances, give one example each.
 - i) Tranquilizers ii) Food preservatives iii) Antihistamines.

Section- D (5 mark)

- 1. A decimolar solution of potassium ferrocyanide, K₄[Fe(CN)₆] is 50% dissociated at 300K. Calculate the value of van't Hoff factor for potassium ferrocyanide .Also Calculate the osmotic pressure of solution at 300K.
- 2 i) Define the following terms:
- a) Azeotrope
- b) Osmotic pressure
- c) Colligative properties
 - ii) Calculate the mass of a non- volatile solute (molar mass = $40 \text{g} \text{ mol}^{-1}$), which should be dissolved in 114 g of octane to reduce its vapour pressure to 80%. (Molar mass of octane = $114 \text{g} \text{ mol}^{-1}$).
- 3.a) Define the term molar conductivity. How is it related to conductivity of the related solution?
 - b) Explain with examples the terms: weak and strong electrolytes.

- 4. a) Calculate e.m.f and ΔG for the following cell Mg(s)/Mg²⁺ (0.001M)//Cu²⁺ (0.0001M)//Cu(s) E⁰_(Mg²⁺/Mg) = -2.37 V, E⁰_(Cu²⁺/Cu) = + 0.34V.
 b) Write the name of the cell which is generally used in inverters. Write the reactions taking place at
 - the anode and cathode of this cell.
- 5. Give reasons:
 - n- butyl bromide has higher boiling point than t- butyl bromide. i)
 - Racemic mixture is optically inactive ii)
 - iii) The presence of nitro group (-NO₂) at o/p positions increases the reactivity of haloarenes towards Nucleophilic substitution reactions.
 - iv) What are ambident nucleophiles? Give an example.