DELHI PUBLIC SCHOOL, JAMMU

ASSIGNMENT CYCLE TEST II

(2019-20)

Sub: Mathematics

Class: XI

Q1. The acute angle between the medians drawn from the acute angles of a right angled isosceles triangle is
a. $\cos ^{-1}\left(\frac{2}{3}\right)$
b. $\cos ^{-1}\left(\frac{3}{4}\right)$
c. $\cos ^{-1}\left(\frac{4}{5}\right)$
d. $\cos ^{-1}\left(\frac{5}{6}\right)$

Q2. The distance between the orthocenter and circumcentre of the triangle with vertices $(1,2) .(2,1)$ and $\left(\frac{3+\sqrt{3}}{2}, \frac{3+\sqrt{3}}{2}\right)$ is
a. 0
b. $\sqrt{2}$
c. $3+\sqrt{3}$
d. none of these

Q3. The equation of the straight line which passes through the point $(-4,3)$ such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3 is
a. $9 x-20 y+96=0$
b. $9 x+20 y=24$
c. $20 x+9 y+53=0$
d. none of these

Q4. The equation of the parabola whose vertex is $(a, 0)$ and the directrix has the equation $\quad x+y=3 a$, is
a. $x^{2}+y^{2}+2 x y+6 a x+10 a y+7 a^{2}=0$
b. $x^{2}-2 x y+y^{2}+6 a x+10 a y-7 a^{2}=0$
c. $x^{2}-2 x y+y^{2}-6 a x+10 a y-7 a^{2}=0$
d. none of these

Q5. The parametric equations of a parabola are $x=t^{2}+1, y=2 t+1$. The Cartesian equation of its directrix is
a. $\mathrm{x}=0$
b. $\mathrm{x}+1=0$
c. $\mathrm{y}=0$
d. none of these

Q6. The equation of the conic with focus at $(1,-1)$ directrix along $x-y+1=0$ and eccentricity $\sqrt{2}$ is
a. $x y=1$
b. $2 x y+4 x-4 y-1=0$
c. $x^{2}-y^{2}=1$
d. $2 x y-4 x+4 y+1=0$

Q7. The eccentricity of the conic $9 x^{2}-16 y^{2}=144$ is
a. $\frac{5}{4}$
b. $\frac{4}{3}$
c. $\frac{4}{5}$
d. $\sqrt{7}$

Q8. For ellipse $x^{2}+4 y^{2}=9$
a. the eccentricity is $\mathbf{1 / 2}$
b. the latus-rectum is $\mathbf{3 / 2}$
c. a focus is $(3 \sqrt{3}, 0)$
d. directrix is $x=-2 \sqrt{3}$

Q9. If the latus-rectum of an ellipse is one half of its minor axis, then its eccentricity is
a. $\frac{1}{2}$
b. $\frac{1}{\sqrt{2}}$
c. $\frac{\sqrt{3}}{2}$
d. $\frac{\sqrt{3}}{4}$

Q10. If the major axis of an ellipse is three times the minor axis, then its eccentricity is equal to
a. $\frac{1}{3}$
b. $\frac{1}{\sqrt{3}}$
c. $\frac{1}{\sqrt{2}}$
d. $\frac{2 \sqrt{2}}{3}$
e. $\frac{2}{3 \sqrt{2}}$

Q11. Find the equation of the parabola whose:
(i) Focus is $(3,0)$ and the directrix is $3 x+4 y=1$
(ii) Focus is $(1,1)$ and the directrix is $x+y+1=0$
(iii) focus is $(\mathbf{0 , 0})$ and the directrix $2 x-y-1=0$

Q12. Find the equation of the parabola whose focus is the point $(2,3)$ and directrix is the line $x-4 y+3=0$. Also find the length of its latus-rectum.

Q13. Find the equation of the parabola if
(i) the focus is at $(-6,-6)$ and the vertex is at $(-2,2)$
(ii) the focus is at $(0,-3)$ and the vertex is at $(0,0)$
(iii) the focus is at $(0,-3)$ and the vertex is at $(-1,-3)$
(iv) the focus is at $(a, 0)$ and the vertex is at $\left(a^{\prime}, 0\right)$

Q14. Find the equation of the straight line passing through the point (6,2) and having slope -3 .

Q15. Find the equation of the straight line which divides the join of the points $(2,3)$ and $(-5,8)$ in the ratio $3: 4$ and is also perpendicular to it.

Q16. Prove that the perpendicular drawn from the point $(4,1)$ on the join of $(2,-1)$ and $(6,5)$ divides it in the ratio $5: 8$.

Q17. Find the equations to the altitudes of the triangle whose angular points and $A(2,-2), B(1,1)$ and $C(-1,0)$.

Q18. Find the equation of the right bisector of the line segment joining the points $(3,4)$ and (-1, 2).

Q19. Find the equation of the line passing through the point $(-3,5)$ and perpendicular to the joining $(2,5)$ and $(-3,6)$.

Q20. Using section formula, show that the points $A(2,-3,4), B(-1,2,1)$ and $C\left(0, \frac{1}{3}, 2\right)$ are collinear.

Q21. Find the lengths of the medians of the triangle with vertices $A(0,0,6), B(0,4,0)$ and $(6,0,0)$.

Q22. If the origin is the centroid of the triangle $P Q R$ with vertices $P(2 a, 2,6)$, $Q(-4,3 b,-10)$ and $R(8,14,2 c)$, then find the values of a, b and c.

Q23. Find the coordinates of a point on y-axis which are at a distance of $5 \sqrt{2}$ from the point $P(3,-2,5)$.

Q24. Find the sum to n terms of the sequence, $\mathbf{8 , 8 8}, \mathbf{8 8 8}, 8888 \ldots \ldots$

Q25. Find four numbers forming a geometric progression in which the third term is greater than the first term by 9 , and the second term is greater than the $4^{\text {th }}$ by 18.

