DELHI PUBLIC SCHOOL
 SESSION 2017-18
 Question Bank

Class:- IX

1. If $a=b^{3 x}, b=c^{3 y}$ and $c=a^{3 z}$, then find $x y z$

Subject:- M aths

Sol:- $a=b^{3 x}$
Or $a=\left(c^{3 y}\right)^{3 x}$
$\left(\because b=c^{3 y}\right)$
Or $a=c^{9 x y}$

$$
\begin{array}{ll}
a=\left(a^{3 z}\right)^{9 x y} & \left(\because c=a^{3 z}\right) \\
a=a^{27 x y z}
\end{array}
$$

$27 \mathrm{xyz}=1$
Or $x y z=\frac{1}{27}$
2. If $x=2+\sqrt{3}$, find the value of $x^{3}+\frac{1}{x^{3}}$

Sol:- $x=2+\sqrt{3}$

$$
\begin{aligned}
\frac{1}{x} & =\frac{1}{2+\sqrt{3}} \\
\frac{1}{x} & =\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}} \\
\frac{1}{x} & =\frac{2-\sqrt{3}}{2^{2}-(\sqrt{3})^{2}} \\
\frac{1}{x} & =\frac{2-\sqrt{3}}{4-3}
\end{aligned}
$$

$$
\frac{1}{x}=2-\sqrt{3}
$$

$$
\begin{aligned}
x^{3}+\frac{1}{x^{3}}= & (2+\sqrt{3})^{3}+(2-\sqrt{3})^{3} \\
& =8+3 \sqrt{3}+6 \sqrt{3}(2+\sqrt{3})+8-3 \sqrt{3}-6 \sqrt{3}(2-\sqrt{3})
\end{aligned}
$$

3. If $x^{2}-1$ is a factor of $a x^{4}+b x^{3}+c x^{2}+d x+e$, show that $a+c+e=b+d$.

Sol:- $P(x)=a x^{4}+b x^{3}+c x^{2}+d x+e$
And $g(x)=x^{2}-1=(x-1)(x+1)$
when $(x+1)$ is factor of $P(x)$ then $P(-1)=0$
or $a(-1)^{4}+b(-1)^{3}+c(-1)^{2}+d(-1)+e=0$
$a-b+c-d+e=0$
$a+c+e=b+d$
4. Factorise $x^{2}-1-2 p-p^{2}$

Sol:- $\quad x^{2}-\left(1+2 p+p^{2}\right)$

$$
\begin{aligned}
& =x^{2}-(1+p)^{2} \\
& =(x+1+p)(x-1-p)
\end{aligned}
$$

5. In which quadrant or on which axis the following points lies $(1,-2),(2,3),(-4,3),(0,5),(-6,-7)$

Sol:- (1,-2)----------- IV quadrant
(2,3)------------- I quadrant
(-4,3)----------------|I quadrant
(0,5)--------------- on y-axis

6．find k if $x=2$ and $y=1$ is solution of $x+5 y=k$

$$
\text { Sol :- at } x=2 \text { and } y=1 \text {, }
$$

$$
\begin{gathered}
2+5(1)=k \\
2+5=k \\
\mathbf{K}=\mathbf{7}
\end{gathered}
$$

7．If $\mathrm{F}=9 / 5 \mathrm{C}+32$ ，find（i） C if $\mathrm{F}=40$ 。（ii） F if $\mathrm{C}=40$ 。
Sol：－（i）if $\mathrm{F}=40$ o then $40=9 / 5 \mathrm{C}+32$

$$
\begin{gathered}
40-32=9 / 5 C \\
8 \times 5=9 C \\
C=40 / 9
\end{gathered}
$$

（ii）if $\mathrm{c}=-40 \quad \mathrm{~F}=\frac{9}{5}(-40)+32$
$\mathrm{F}=-72+32$
F＝－40。
8．If $x+y=10$ and $x=z$ ，then show that $y+z=10$ ，by using appropriate Euclid＇s axom．

Sol：－$\quad x+y=10$

$$
\text { or } x=10-y
$$

By using Euclid's axiom 1 .i.e. things which are equal to same thing are equal to one another.

$$
\text { So, } x=10-y
$$

$$
\therefore y+z=10
$$

9. $\mathrm{DE} \| \mathrm{QR}$ and AP and BP are bisectors of $\angle E A B$ and
$\angle R B A$ respectively. Find $\angle A P B$.
Sol. DE\|I $Q R$

$\angle P A B=\frac{1}{2} \angle E A B$
$\angle P B A=\frac{1}{2} \angle A B R$
$A B$ is transversal, $: \quad \angle E A B+\angle A B R=180^{\circ}$
$\frac{1}{2} \angle E A B+\frac{1}{2} \angle A B R=\frac{1}{2} 180^{\circ}$

$$
\angle P A B+\angle A B P=90^{\circ}
$$

In $\triangle A B P$,

$$
\angle P A B+\angle A B P+\angle A P B=180^{\circ}
$$

$$
90^{\circ}+\angle A P B=180^{\circ}
$$

$$
\angle \mathrm{APB}=90^{\circ}
$$

10. Prove that medians of equilateral triangle is equal.

Sol.
Given:- ABC is an equilateral triangle in which $\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$ and $\angle A=$ $\angle B=\angle C=60^{\circ} . \mathrm{AD}, \mathrm{BE}$ and CF are the medians.

To Prove:- $A D=B E=C F$

Proof:- $A B=A C$

$$
\begin{aligned}
& \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{AC} \\
& \mathrm{BF}=\mathrm{CE}
\end{aligned}
$$

In $\triangle B C F$ and $\triangle C B E$

$$
B C=C B \quad \text { (common) }
$$

$\angle F B C=\angle E C B\left(\right.$ Each $\left.60^{\circ}\right)$

$$
\mathrm{BF}=\mathrm{CE} \quad \text { (proved) }
$$

$\therefore \quad \triangle \mathrm{BCF} \cong \triangle C B E \quad$ (SAS)
So, $\quad \mathrm{CF}=\mathrm{BE} \quad$ (cpct)
Similarly, $A D=B E$
Hence $A D=B E=C F$
11. $A B C D$ is a parallelogram. The circle through A, B, C intersect $C D$

produced at E. Prove that $A D=A E$.
Sol. Given:- $A B C D$ is a parallelogram and $A B C E$ is a cyclic quadrilateral.

> To Prove:- AD=AE

Proof:- ABCD is a parallelogram

$$
\angle A B C=\angle A D C \quad \text { (opposite angles of parallelogram)-----1 }
$$

$A B C D$ is a cyclic quadlateral

$$
\begin{align*}
& \angle A B C+\angle A E C=180^{\circ} \\
& \angle A D C+\angle A E C=180^{\circ} \tag{use1}
\end{align*}
$$

But $\angle A D E+\angle A D C=180^{\circ} \quad$ (linear pair)
$\angle A D C+\angle A E C=\angle A D E+\angle A D C$
Or $\angle A E C=\angle A D C$
\therefore In $\triangle \mathrm{ADE}$. AD=AE
(\because In a Δ sides opposite to equal angles are equal)
12. Construct a triangle ABC in which $\mathrm{BC}=8 \mathrm{~cm}, \angle B=45^{\circ}$, and $A B-A C=3.5 \mathrm{~cm}$.

Sol:-

steps of construction:-

1. Draw a line segment of length 8 cm
2. At B draw an angle of 45° i.e $\angle X B C=45^{\circ}$
3. With B as centre and radius $=3.5 \mathrm{~cm}$ cut an arc on $B X$ at D
4. Join DC
5. Draw perpendicular bisector of DC so that it intersect BD produced at A
6. Join AC

Hence ABC is required triangle.
13. If each side of triangle is doubled, then find the ratio of area of new triangle formed and of given triangle.

Sol. let a, b and c are sides of given triangle

$$
\mathrm{S}=\frac{a+b+c}{2}
$$

Then area of triangle, according Heron's formula
$\mathrm{A}=\sqrt{s(s-a)(s-b)(s-c)}$
When sides are doubled,

$$
\mathrm{S}_{1}=\frac{2 a+2 b+2 c}{2}=\mathrm{a}+\mathrm{b}+\mathrm{c}=2 \mathrm{~s}
$$

Then area of new triangle $\left(\mathrm{A}_{1}\right)=\sqrt{\mathrm{s}_{1}\left(s_{1}-a\right)\left(s_{1}-b\right)\left(s_{1}-c\right)}$

$$
\begin{aligned}
& \quad=\sqrt{2 s(2 s-2 a)(2 s-2 b)(2 s-2 c)} \\
&= \sqrt{2 \times 2 \times 2 \times 2 \times s(s-a)(s-b)(s-c)} \\
&=2 \times 2 \sqrt{s(s-a)(s-b)(s-c)} \\
& \mathrm{A}_{1}= 4 \times \mathrm{A}
\end{aligned}
$$

$$
\text { Hence, } \frac{A 1}{A}=\frac{4}{1}
$$

14. Length, breadth and height or room are $5 \mathrm{~m}, 4 \mathrm{~m}$, and 3 m respectively. Find the cost of whitewashing its wall and ceiling at the rate of Rs 7.50 per m^{2}.

Sol. length $(I)=5 \mathrm{~m}, \operatorname{Breath}(\mathrm{~b})=4 \mathrm{~m}, \operatorname{Height}(\mathrm{~h})=3 \mathrm{~m}$.
Area of room to be whitewashed = Lateral surface area + area of ceiling

$$
\begin{aligned}
& =2 h(1+b)+1 \times b \\
& =2 \times 3(5+4)+5 \times 4 \\
& =6(9)+20
\end{aligned}
$$

$$
\begin{aligned}
& =54+20 \\
& =74 \mathrm{~m}^{2}
\end{aligned}
$$

cost of painting $=7.50 \times 74=$ Rs 555

15. A hemispherical bowl is made of steel of thickness 0.25 cm . the inner radius of bowl is 5 cm . find the outer curved surface area.

$$
\begin{aligned}
& \text { Sol. rad. }(r)=5 \mathrm{~cm} \\
& \text { Thickness }=0.25 \mathrm{~cm} \\
& \text { outer radius }(\mathrm{R})=5+0.25=5.25 \mathrm{~cm} \\
& \begin{aligned}
\text { outer curved surface area } & =2 \pi \mathrm{r}^{2} \\
& =2 \times \frac{22}{7} \times 5.25 \times 5.25 \\
& =173.25 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

16. How many lead balls, each of radius 1 cm , can be made from sphere of radius 8 cm .

Sol. radius of big sphere $(R)=8 \mathrm{~cm}$.
Radius of lead ball (r) $=1 \mathrm{~cm}$
No. of lead balls $=\frac{\text { volume of big sphere }}{\text { volume of lead ball }}$

$$
\begin{gathered}
=\frac{\frac{4}{3} \pi R^{3}}{\frac{4}{3} \pi r^{3}} \\
=\frac{R^{3}}{r^{3}} \\
=\frac{8^{3}}{1^{3}} \\
=\frac{512}{1}
\end{gathered}
$$

$$
=512
$$

17. Conical pit of top diameter 3.5 m is 12 m deep. Find capacity of pit in kilolitres?

Sol. Diameter $=3.5 \mathrm{~m}$
Radius $(r)=3.5 / 2=1.75 \mathrm{~m}$
Height $(\mathrm{h})=12 \mathrm{~m}$
Volume of pit $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \frac{22}{7} 1.75 \times 1.75 \times 12 \\
& =38.5 \mathrm{~m}^{3}=38.5 \mathrm{kl}\left(\because 1 \mathrm{kl}=1 \mathrm{~m}^{3}\right)
\end{aligned}
$$

18. Number of runs scored by a cricket player in 25 innings are as follow:
$26,35,94,48,82,105,53,0,39,42,71,0,64,15,34,67,0,42$,
$124,84,54,48,139,64,47$.
Sol. smallest value $=0$
Largest value $=139$
Range $=139-0=139$

Score	Tally marks	frequency	Cumulative frequency
$0-20$	IIIII	4	4
$20-40$	IIII	4	8
$40-60$	III II	7	15
$60-80$	IIII	4	19
$80-100$	III	3	22
$100-120$	I	1	23
$120-140$	II	2	25

19. Median for the data is 63 . Find x for data arranged in ascending order
$29,32,48,50, x, x+2,72,78,84,95$.
Sol. median $=\frac{x+x+2}{2}$

$$
\begin{aligned}
& 63=\frac{x+x+2}{2} \\
& 63 \times 2=2 x+2 \\
& 126-2=2 x \\
& 2 X=124 \\
& X=62
\end{aligned}
$$

20. Find mean, mode and median for data.
$12,18,13,19,15,14,17,16$.
Sol. Me ean $=\frac{\text { sum of values }}{\text { total values }}$

$$
\begin{aligned}
& =\frac{12+18+13+19+15+14+17+16}{8} \\
& =124 / 8 \\
& =15.5
\end{aligned}
$$

For median arrange data on ascending order
$12,13,14,15,16,17,18,19$
Here, $n=8$, which is even

$$
\begin{aligned}
\text { Median } & =\frac{n}{2} t h,\left(\frac{n}{2}+1\right) \text { th } \\
& =\frac{4 t h+5 t h}{2} \\
& =\frac{15+16}{2} \\
& =\frac{31}{2} \\
& =15.5 \\
\text { Mode }= & 3 \text { median }-2 \text { mean } \\
= & 3 \times 15.5-2 \times 15.5 \\
& =46.5-31 \\
& =15.5
\end{aligned}
$$

21. In sample of a die. Find the probability of
(i) an odd prime
(ii) a number less than 6
(iii) an even number.
(iv) a number more than 7 .

Sol. total out comes $=6$
P (odd prime) $=2 / 6=1 / 3$
$P($ a number less than 6$)=5 / 6$
$P($ an even $)=3 / 6=1 / 2$
$P($ a number more than 7$)=0 / 6=0$.
22. From a deck of playing cards, find probability of
(i) a red king
(ii) an ace of club
(iii) a face card
(iv) a black card.

Sol. total cards $=52$
$P($ red king $)=2 / 52=1 / 26$
$\mathrm{P}($ an ace of club $)=1 / 52$
$\mathrm{P}($ a face card $)=12 / 52=4 / 13$
$P($ a black card $)=26 / 52=1 / 2$
23. A box contain 550 bulbs out of which 22 are defective. One bulb is taken out at random from a box. find the probability of getting (i) a defective bulb
(ii) a good bulb.

Sol. total bulbs =550
No. of defective bulb $=22$
$P($ defective bulb $)=22 / 550=0.04$
$P($ good bulb $)=528 / 550=0.96$
24. Find 6 rational number between $1 / 3$ and $2 / 5$

Sol. $a=\frac{1}{3}$ and $b=\frac{2}{5}$
LCM of $3 \& 5=15$
$a=\frac{1 \times 5}{3 \times 5}=\frac{5 \times 10}{15 \times 10}=\frac{50}{150}$
$b=\frac{2 \times 3}{5 \times 3}=\frac{6 \times 10}{15 \times 10}=\frac{60}{150}$
required numbers are $\frac{51}{150}, \frac{52}{150}, \frac{53}{150}, \frac{54}{150}, \frac{55,}{150}, \frac{56}{150}$
25. If $a+b=9, a b=7$ find $a^{3}+b^{3}$

Sol. $a+b=9$
cubing both sides
$(a+b)^{3}=9^{3}$
or $a^{3}+b^{3}+3 a b(a+b)=729$
$a^{3}+b^{3}+3 \times 7 \times 9=729$
$a^{3}+b^{3}+189=729$
$a^{3}+b^{3}=729-189$
$a^{3}+b^{3}=540$

