DELHI PUBLIC SCHOOL, JAMMU
 SESSION: 2018-19
 Cycle test-II

Class: IX

ASSIGNMENT

SECTION-A

Q1. The quotient obtained when $\sqrt{1500}$ is divided by $2 \sqrt{15}$ is:
Q2. The zeroes of the polynomial $p(x)=x(x-2)(x-3)$ are:
Q3. The degree of the polynomial $3 x^{3}+0 x^{4}+8$ is:
Q4. The coefficient of x^{2} in $\left(2-3 x^{2}\right)\left(x^{2}-5\right)$ is :
Q5. Angles of a triangle are in the ratio $3: 4: 5$, the largest angle of the triangle is:

SECTION-B

Q6. If $a=2$ and $b=3$, then find the value of $a^{b}+b^{a}$.
Q7. Factorise : $64 x^{3}+\sqrt{125} y^{3}$.
Q8. Expand using a suitable identity: $(2 x-3 y+z)^{2}$.
Q9. In $\triangle A B C, \angle A+\angle B=65^{\circ}$ and $\angle B+\angle C=140^{\circ}$. Find the value of $\angle B$ and $\angle C$.
Q10. In $\triangle A B C, \angle B=45^{\circ}, \angle C=55^{\circ}, A D$ bisects $\angle A$. Find $\angle A D B$ and $\angle A D C$.

Q11. The base of an isosceles triangle is 10 cm and one of its equal sides is 13 cm . Find its area.
Q12. Find two irrational numbers between $\frac{1}{3}$ and $\frac{1}{2}$.
Q13. Factorise : $x^{4} y^{4}-256 z^{4}$.
Q14. Without calculating the cubes, find the value of $(-11)^{3}+(8)^{3}+(3)^{3}$.
Q15. In the given figure, what value of x will make POQ a straight line?

Q16. In the given figure, lines $A B, C D$ and $E F$ intersect at O. Find x and y.

Q17. Find the area of a parallelogram whose sides are 13 cm and 14 cm and diagonal is 15 cm .

SECTION-C

Q18. $A B$ and $C D$ are respectively the smallest and longest sides of a quadrilateral $A B C D$. Show that $\angle \mathrm{A}>\angle \mathrm{C}$ and $\angle \mathrm{B}>\angle \mathrm{D}$.

D

Q19. Represent $\sqrt{5.4}$ geometrically.
Q20. Simplify: $(a+2 b+3 c)^{2}-(a-2 b+3 c)^{2}-6 b^{2}-9 b c$.
Q21. Find the zeroes of the polynomial $2 x^{3}+5 x^{2}+2 x$.
Q22. If a side of a triangle is produced, the exterior angle so formed is equal to sum of the interior opposite angles. Prove it.

Q23. In the given figure, the QR of a triangle PQR is produced to a point S . If the bisectors of $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ meet at a point T , prove that $\angle \mathrm{QTR}=\frac{1}{2} \angle \mathrm{QPR}$.

Q24. The median of the following observations arranged in ascending order is 24 . Find the value of x. $11,12,14,18, x+2, x+4,30,32,35,41$.
Q25. Draw the graph of the linear equation, $2 x+3 y=12$. At what points, the graph of the equation cuts the x-axis and the y-axis?

Q26. Draw the graph of two lines, whose equations are $3 x-2 y+6=0$ and $x+2 y-6=0$ on the same graph paper. Find the area of triangle formed by the two lines and x-axis.
Q27. If the point $(3,4)$ lies on the graph of the equation, $2 y=a x+6$, find whether $(6,5)$ also lies on the same graph.

Q28. Find the mean of the following data by 'Short-cut Method'.

Marks	20	22	25	30	35	39	45	50	Total
Frequency	4	6	8	10	8	7	5	2	50

Q29. Find the mean X of the first eight even natural numbers. Also, verify that $\sum_{i=1}^{8}(x i-\bar{X})=0$.

SECTION-D

Q30. Find the values of a and b so that the polynomial $x^{3}+10 x^{2}+a x+b$ is exactly divisible by $(x-1)$ and ($x+2$).
Q31. Find the value of $8 x^{3}+27 y^{3}$. if $2 x+3 y=8$ and $x y=2$.
Q32. Factorise : $x^{4}+2 x^{3} y-2 x y^{3}-y^{4}$.
Q33. The line joining the mid -points of two sides of a triangle is parallel to third side.
Q34. In the given figure, $A B C$ and $D B C$ are two isosceles triangles on the same base $B C$ and vertices A and D are on the same side of base $B C$. If $A D$ is produced to intersect $B C$ at P, show that $A P$ is the perpendicular bisector of BC.

Q35. In the given figure, $A B C$ is a right angled triangle, right angled at C, M is the mid-point of hypotenuse $A B . C$ is joined to M and produced to a point D such that $D M=C M$. D is joined to B. Prove that $C M=\frac{1}{2} A B$.

Q36. In the given figure, $A B=B C$ and $A D=C D$. Prove that $\angle A D E$ is a right angle and $A E$ and $E C$ are equal.

Q37. Prove that angles opposite to equal sides of an isosceles triangle are equal.
Q38. Following table gives the distribution of the marks obtained by the students of a class.

Marks	$0-15$	$15-30$	$30-45$	$45-60$	$60-75$	$75-90$
Number of Students	5	12	28	30	35	13

Represent the data by a frequency polygon.
Q39. $A B C D$ is a Rhombus and P, Q, R and S are the mid points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rectangle.

