DELHI PUBLIC SCHOOL, JAMMU
 PRE BOARD-II Assignment (Standard)

Class:X

Sub:-Mathematics

Section A (Objective Type)
 MCQ (1 to 10)

1. Given the $\operatorname{HCF}(253,550)=11$ and $\operatorname{LCM}(253,550)=253 x \mathrm{R}$. The value of R is
(a) 400
(b) 40
(c) 440
(d) 50
2. Which of the following is irrational?
(a) $\sqrt{ } 16+\sqrt{ } 9$
(b) $\sqrt{ } 25+\sqrt{ } 4$
(c) $\sqrt{ } 4+\sqrt{ } 9$
(d) $\sqrt{ } 3+\sqrt{ } 5$
3. If the zeroes of the quadratic polynomial $x^{2}+a x+b$ are 2 and -3 , then
$\begin{array}{lll}\text { (a) } a=0, b=-6 & \text { (b) } a=2, b=-6 & \text { (c) } a=5, b=-1 \\ \text { (d) } a=1, b=-1.5\end{array}$
4. If α and β are the zeroes of $p(x)=x^{2}-5 x+6$, then the value of $\alpha+\beta-\alpha \beta$ is
(a) -23
(b) -1
(c) 13
(d) 23
5. If $\sin \theta=\frac{1}{3}$, then the value of $2 \cot ^{2} \theta+2$ is equal to:
(a) 6
(b) 9
(c) 4
(d) 18
6. In a right triangle ABC , right angled at $\mathrm{B}, \mathrm{BC}=15 \mathrm{~cm}, \mathrm{AB}=8 \mathrm{~cm}$. A circle is inscribed in triangle ABC . The radius of the circle is
(a) 1 cm
(b) 2 cm
(c) 3 cm
(d) 4 cm .
7. If $\mathrm{D}, \mathrm{E}, \mathrm{F}$ are mid points of sides $\mathrm{BC}, \mathrm{CA}, \mathrm{AB}$ respectively of triangle ABC , then the ratios of the area of triangle DEF and $A B C$ is
(a) $1: 4$
(b) $1: 2$
(c) $2: 3$
(d) $4: 5$
8. If $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ are similar such that $2 \mathrm{AB}=\mathrm{DE}$ and $\mathrm{BC}=10 \mathrm{~cm}$, then $\mathrm{EF}=$
(a) 16 cm
(b) 12 cm
(c) 20 cm
(d) 4 cm
9. If $(x, 2),(-3,-4)$ and $(7,-5)$ are collinear, then $x=$
(a) 60 (b) 63
(c) -63
(d) -60
10. The ratio in which $(4,5)$ divides the join of $(2,3)$ and $(7,8)$ is
(a) $4: 3$
(b) 5:2
(c) $3: 2$
(d) $2: 3$

Fill in the blanks (11-15)

11. Probability of definate event is
12. Probability of an even prime number in a die is \qquad
13. Total number of outcomes when three dice are thrown simultaneously \qquad
14. If a and b are the roots of $x^{2}+2 a x+3 b=0, a+b=$ \qquad
15. For AP $10,15,20,25,---.200^{\text {th }}$ term is \qquad

Very short type (16-20)

16. In deck of playing cards, find probability of red face card.
17. Find discriminant for $3 x^{2}+8 x-5=0$.
18. Find k if $x=1$ is zero of $3 x^{2}+2 k x-2=0$.
19. Find first term and common difference for $6,2,-2,-6,--------$
20. Which term of AP $3,8,13,18,----$,is 98.
21. Find the HCF of $3^{3} \times 5$ and $3^{2} \times 5^{2}$
22. Find distance between (a, b) and $(-a,-b)$
23. Find the value(s) of k, if the quadratic equation $3 x^{2}-k V 3 x+4=0$ has equal roots.
24. In $\triangle A B C, D E \| A B$, and $A D=2 x, D C=x+3, B E=2 x-1$ and $C E=x$, find x.
25. Find the eleventh term from the last term of the AP $27,23,19, \ldots,-34$
26. If $15 \operatorname{Cot} A=8$, find $\operatorname{Sin} A$ and $\operatorname{Sec} A$
27. Diameter of two concentric circles be 2 cm and and 4 cm respectively . find area of ring formed.
28. Out of 200 bulbs in a box, 12 bulbs are defective. One bulb is taken out at random from box. What is probability that drawn bulb is not defective.

Section B

29. Find HCF and LCM of 90 and 144 by method of prime factorization.
30. $A B C$ is an isosceles triangle right angled at C. prove that $A B^{2}=2 A C^{2}$.
31. The sum of first n terms of an AP is given by $S n=2 n^{2}+3 n$. Find the sixteenth term of the AP.
32. Prove that the points $(3,0),(6,4)$ and $(-1,3)$ are the vertices of a right angled triangle.
33. If $\operatorname{Sin}(A+B)=1$ and $\operatorname{Sin}(A-B)=\frac{1}{2}$, find A and B
34. If the radius of the circle is 6 cm and the length of arc is 12 cm . find angle and area of sector

35 . Find area of major segment of sector of circle of radius 14 cm with angle of sector $=120^{\circ}$
36. The data of marks obtained by 48 students is given below. Find mode.

Marks obtained	$0-5$	$5-10$	$10-15$	$15-20$	$20-25$	$25-30$	$30-35$	$35-40$	$40-45$
Number of students	1	1	2	0	0	10	25	7	2

Section C

37. .Use Euclid division lemma to show that the square of any positive integer is of form $3 \mathrm{~m} 0 \mathrm{r} 3 \mathrm{~m}+1$ for any.
38. If α and β are the zeroes of polynomial $6 y^{2}-7 y+2$, find a quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$
39. Solve for x : $x^{2}-(2 b-1) x+\left(b^{2}-b-20\right)=0$.
40. Half the perimeter of a rectangular garden, whose length is 4 m more than its width, is 36 m . find the dimensions of garden.
41. Show that in a right triangle, the square of hypotenuse is equal to the sum of the squares of the other two sides.
42. In what ratio does the X-axis divide the line segment joining the points ($-4,-6$) and $(-1,7)$? Find the coordinates of the point of division.
43. The sum of n terms of an AP is $3 n^{2}+5 n$. Find the AP and find its $15^{\text {th }}$ term.
44. The sum of three numbers of an AP is 3 and the product of first and third number is -35 . Find the three number.
45. If the coordinates of points A and B are $(-2,-2)$ and $(2,-4)$ respectively find P if $A P=\frac{3}{7} A B$, where P lies on AB.
46. A 7 m long flagstaff is fixed on the top of a tower. At a point on ground, the angle of elevation of top and bottom of flagstaff are 60° and 45° respectively. Find height of tower.
47. If $\operatorname{Cos}\left(40^{\circ}+x\right)=\operatorname{Sin} 30^{\circ}$, find x.
48. Show that $\frac{\operatorname{Cos} A-\operatorname{Sin} A+1}{\operatorname{Cos} A+\operatorname{Sin} A-1}=\operatorname{Cosec} \mathrm{A}+\operatorname{Cot} \mathrm{A}$
49. If $\sin \theta+\cos \theta=\sqrt{2}$, then evaluate: $\tan \theta+\cot \theta$.
50. Radii of the end of frustum are 28 cm and 7 cm . height is 45 cm . find volume and total surface area.

Section D

51. If the equation $\left(1+m^{2}\right) x^{2}+2 m c x+\left(c^{2}-a^{2}\right)=0$, has equal roots, prove that $c^{2}=a^{2}\left(1+m^{2}\right)$.
52. A train travelling at a uniform speed for 360 km would have taken 48 min less to travel the same distance if its speed were $5 \mathrm{~km} / \mathrm{h}$ more. Find the original speed of the train.
53. The sum of third and seventh term of an AP is 6 and their product is 8 . Find the sum of first sixteen terms of AP.
54. An AP consists of 37 terms. The sum of the three middle most terms is 225 and the sum of the last three terms is 429 . Find the AP
55. OCDE is a square of side 14 cm and $A D B$ is Quadrant in it. Find area of region between square and quadrant.
56. Construct a triangle of sides 4 cm and 6 cm and angle between them is 75°. construct $\frac{7}{5}$ of this triangle and write steps
57. Prove that length of tangents drawn from an external point to the circle are equal.
58. A container open at the top, is in a form of frustum of cone of height 24 cm and radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of milk which can completely fill the container at the rate of Rs 27 per litre.
59. Find x and y.

Literacy rate (in\%)	$35-40$	$40-45$	$45-50$	$50-55$	$55-60$	$60-65$	$65-70$	$70-75$	$75-80$	$80-85$	$85-90$
No. of cities	1	2	3	x	y	6	8	4	2	3	2

60. From deck of well shuffled playing cards all black face cards are removed. Find the probability of:
(i) A face card (ii) A queen (iii) An black ace (iv) A club.
