DELHI PUBLIC SCHOOL JAMMU Session (2019-20)

Pre-Board II Assignment for Class 12th Subject- Physics

A plane mirror makes an angle of 30o with horizontal. If a vertical ray strikes the mirror, find

(d)

90°

Q01

(a)

82

(b)

83

(c)

the angle between mirror and reflected ray

45°

(c)

(b)

30°

Q02		An obj	An object of length 2.5 cm is placed at a distance of 1.5 f from a concave mirror where f is										
t	the ma	gnitude	of the	focal lei	ngth of	the mir	ror. The	lengt	h of the	object i	s perpe	endicular	to the
F	princip	le axis. ⁻	The leng	th of the	image i	S							
((a)	5 cm, 6	erect	(b)	10 cm,	erect	(c)	15 cı	m, erect	(d)	5 cm	n, inverted	k
Q03		32.	An ob	ject of le	ngth 6c	m is pla	ced on	the pr	incipal ax	is of a c	oncave	e mirror o	of focal
I	ength	f at a di	stance c	of 4 f. The	e length	of the ir	nage wi	ll be					
((a)	2 cm	(b)	12 cm	(c)	4 cm	(d)	1.2 c	m				
Q04		The m	asses o	f neutro	n and p	roton a	re 1.00	87 am	u and 1.	0073 ar	nu res	pectively.	If the
r	neutro	ns and _I	protons	combine	to forn	n a heliu	ım nucle	eus (al	pha parti	cles) of	mass 4	.0015 am	u. The
ŀ	binding energy of the helium nucleus will be [1 amu= 931 MeV]												
((a)	28.4 N	1eV	(b)	20.8 M	eV	(c)	27.3	MeV	(d)	14.2	MeV	
Q05		The counting rate observed from a radioactive source at t = 0 second was 1600 counts per											
9	second and at t = 8 seconds it was 100 counts per second. The counting rate observed as counts per												
9	second	id at t = 6 seconds will be											
((a)	400	(b)	300	(c)	200	(d)	150					
Q06		A pote	ntial dif	ference o	of V is ap	oplied at	t the en	ds of a	copper v	vire of le	ength I	and diam	eter d.
(On dou	n doubling only d, drift velocity											
((a)	Becomes two times			(b) Becomes half			((c) Does	not char	nge	(d) Becon	nes
(one fourth												
Q07	An aluminium rod of length 3.14 m is of square cross-section 3.14 2 3.14 mm2. What should												
ŀ	be the	radius c	of 1 m lo	ng anoth	ner rod o	of same i	material	to hav	ve equal ı	esistano	e		
((a)	2 mm	(b)	4 mm	(c)	1 mm	(d)	6 mr	n				
Q08		The de	-Broglie	waveler	ngth of a	neutro	n at 27o	C is 🛭	. What w	ill be its	wavele	ength at 9	27oC
((a)	$\lambda/2$			(b) /	ી/3			(c) λ/ ^Δ	ļ		(d) λ/9	9
Q09		Light c	of freque	ency 8X	10 ¹⁵ is i	ncident	on a su	bstand	e of pho	toelectr	ic work	k function	6.125
6	eV. The	e maxim	ium kine	etic energ	gy of the	emitte	d photo	electro	ns is				
((a)	17 eV	(b)	22 eV	(c)	27 eV	(d)	37 e'	V				
Q10		A wire	of fixed	l length i	s turned	I to forn	n a coil (of one	turn. It is	again t	urned t	to form a	coil of
t	three t	urns. If	in both	cases sa	ame amo	ount of	current	is pas	sed, then	the rat	io of tl	he intensi	ities of
1	magne	tic field	produce	ed at the	e centre of a coil will be								
((a)	9 time	s of first	case	(b)	times	of first	case	(c)	3 time	es of fir	rst case	(d)
		times	of first	case									
Q11		Two so	olenoids	having	lengths	L and 2	L and th	ne nun	nber of lo	ops N a	and 4N	, both ha	ve the
9	same current, then the ratio of the magnetic field will be												
((a) 1:2		(b) 2:1		(c)	1:4	(d)	4:1					
Q12		While	a collect	tor to en	nitter vo	Itage is	constan	t in a t	transistor	, the col	llector	current cl	nanges

by 8.2 mA when the emitter current changes by 8.3 mA. The value of forward current ratio hfe is

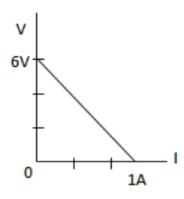
(d)

8.3

8.2

Q13 Horizontal and vertical components of earth's magnetic field at a place are equal. The angle of dip at that place is _____

Q14 A free floating magnetic needle at North pole is ______ to the surface of earth..


Q15 An electron is accelerated through a potential difference of 100 V, then de-Broglie wavelength associated with it is approximately A°

Q16 If the angular speed of the armature of a dynamo is doubled then the amplitude of the induced e.m.f will become ______.

Q17 An equilateral prism is made up of material of refractive index . The angle of minimum deviation of light passing through the prism is .

Q18 A force F is acting between two charges placed some distance apart in vacuum. If a brass rod is placed between these two charges, how does the force change?

Q19 The plot of the variation of potential difference across a combination of three identical cells in series, versus current is as shown below. What is the emf of each cell?

Q20 Uniform electric and magnetic fields are produced pointing to the same direction. An electron is projected in the direction of the fields. What will be the effect on the kinetic energy of the electron due to the two fields?

Q21 Why the oscillations of a copper disc in a magnetic field are lightly damped?

Q22 The amplitude of oscillating electric field in an electromagnetic wave is 50 vm⁻¹. What is the amplitude of the oscillating magnetic field?

Q23 What is the shape of the wavefront when light is diverging from a point source?

Q24 Calculate the threshold frequency of photon for photoelectric emission from a metal of work function 0.1eV?

Q25 What type of impurity is added to obtain n-type semiconductor?

Q26 Define the term resistivity and write its SI unit. Derive the expression for the resistivity of a conductor in terms of number density of free electrons and relaxation time

Q27 Define the term magnetic dipole moment of a current loop. Write the expression for the magnetic moment when an electron revolves at a speed 'v', around an orbit of radius 'r' in hydrogen atom.

Q28 How does the self induction of a coil change when?

(1) The number of turns in a coil is decreased

(2) An iron rod is introduced into it. Justify.

Q29 What are optical fibres? Give their one use?

Q30 In young's double slit experiment how is the fringe width change when

(a) Light of smaller frequency is used

(b) Distance between the slits is decreased?

Q31 How the angular separation and visibility of fringes in Young will's double slit experiment change when (i) screen is moved away from the plane of the slits, and (ii) width of the source slit is increased?

- Q32 An electron and an alpha particle have the same De Broglie wavelength associated with them? How are their kinetic energies related to each other?
- Q33 State Gauss Theorem. A thin charged wire of infinite length has line charge density ' λ '. Derive expression for electric field at a distance 'r'.
- Q34 A parallel plate capacitor is charged by a battery to a potential V. It is disconnected and adielectric slab is inserted to completely fill the space between the plates. How will
 - (a) its capacitance
 - (b) electric field between the plates and
 - (c) energy stored in the capacitor be affected? Justify your answer in each case
- Q35 Draw Circuit diagram for a meter bridge to determine the unknown resistance of a resistor. Obtain the balance condition for a meter bridge. Find the shift in the balance point for a meterbridge when two resistors in its two gaps, are interchanged.
- Q36 hat are eddy currents? Write there important applications. Why are eddy current produced in the cores of transformers and a.c. generators disadvantageous. How can they be minimised?
- Q37 By stating sign conventions and assumptions used derive the relation between u,v and f in case of a concave mirror?
- Q38 Define total infernal reflection of light? Hence write two advantages of total reflecting prisms over a plane mirror?
- Q39 Establish Einstein's photoelectric equation. Use this equation to explain the laws of photoelectric emission.
- Q40 Draw a graph showing the variation of stopping potential with the frequency of incident radiation in relation to photoelectric effect.
 - (a) What does the slope of this graph represent?
 - (b) How can the value of Planck's constant be determined from this graph?
 - (c) How can the value of work function of the material be determined from this graph.
- Q41 State radioactive decay law and hence derive ts relation
- Q42 Draw a curve between mass number and binding energy per nucleon. Give two salient features of the curve. Hence define binding energy?
- Q43 A parallel plate capacitor with plates of area A and separation d is charged to a potential difference V and the battery used to charge is disconnected. A dielectric slab of thickness d and dielectric constant K is now placed between the plates. Explain changes, if any, in the charge, potential difference, capacitance, electric field and energy stored in the capacitor.
- Q44 Define the term resistivity and write its SI unit. Derive the expression for the resistivity of a conductor in terms of number density of free electrons and relaxation time
- Q45 How does the self induction of a coil change when?
 - (1) The number of turns in a coil is decreased
 - (2) An iron rod is introduced into it. Justify.
- Q46 Draw a labelled ray diagram of a reflecting telescope. Mention its two advantages over the refracting telescope.
- Q47 How the angular separation and visibility of fringes in Young will's double slit experiment change when (i) screen is moved away from the plane of the slits, and (ii) width of the source slit is increased?
- Assume that the frequency of the radiation incident on a metal plate is greater than its threshold frequency. How will the following change, if the incident radiation is doubled?
 - (1) Kinetic energy of electrons
 - (2) Photoelectric current