DELHI PUBLIC SCHOOL, JAMMU

REVISION SHEET -III (2019-20)

Topics: - Multiplication, Division, Fractions, More about Shapes and tables 2-12

Q1. Fill in the blanks

1. A fraction is a part of a \qquad
2. The answer in multiplication is called \qquad
3. Division means to divide \qquad
4. A cylinder has \qquad faces and \qquad edges

Q2. Solve

1. $36 \div 6$
2. 94
$\times \quad 8$
\qquad
Q3. Name the given shape, label its parts and give one example of each
3.

2.

e.g \qquad

Q4. Shade the figure according to the given fraction

1. $\frac{1}{3}$

2.

$\frac{3}{4}$

Q5. Complete the grid

\times	7
3	
5	
9	
8	

\div	5
45	
10	
30	
25	

Q6. Mental Math

1. There are 8 rows of 4 trees each. The total number of trees are \qquad
2. Which number multiplied by itself gives 49 ? \qquad
3. One third of 30 apples is \qquad
4. $5+5+5+5=$ \qquad \times \qquad = \qquad

Q7. Tick the correct option

1. $24 \div 6$ is equal to \qquad
a) 4
b) 5
c) 6
2. A cuboid is a figure having \qquad
a) Rectangles
b) squares
c) triangles
3. Half the sum of 20 and 10 is
a) 15
b) 5
c) 10
4. One stool has 4 legs , 3 stools will have \qquad legs
a) 15
b) $\quad 12$
c) 20

Q8. State true or false

1. 7 parrots have 4 eyes
2. Four cylinders have 12 faces
3. 9 times 8 is 72
4. 16 can be divided by 2 and 3

Q9. Put the correct $\operatorname{sign}(<,>$ or $=)$

1. 7×7 \qquad 5×9
2. 6 tens \qquad 600
3. $42 \div 7$ \qquad 6 ones
4. $990+10$ \qquad 1000

Q10. Complete the series

1. $30 \div 5=$ \qquad $\times 4=$ \qquad $+4=$ \qquad $-8=$ \qquad
2. $10 \times 10=$ \qquad $-80=$ \qquad $\div 2=$ \qquad $+20=$ \qquad

Q11. Problem sum

1. Rahul bought 45 toys on his birthday. He gave them equally to 9 friends. How many toys did each child get?

Sol. \qquad
\qquad
\qquad
2. There are 185 marbles in one jar. How many marbles are there in 3 jars?

Sol. \qquad
\qquad
\qquad

