Q 01. The number of significant figures in 0.06900 is
(a) 5
(b) 4
(c) 2
(d) 3

Q 02. A lift is coming from $8^{\text {th }}$ floor and is just about to reach $4^{\text {th }}$ floor. Taking ground as the origin and positive direction upwards for all quantities, which one of the following is correct
(a) $x<0, v<0, a>0$
(b) $x>0, v<0, a<0$
(c) $x>0, v<0, a>0$
(d) $x>0, v>0, a<0$

Q 03. The horizontal range of a projectile fired at an angle of 15° is 50 m . if it is fired with the same speed at an angle is 45°, its range will be
(a) 60 m
(b) 71 m
(c) 100 m
(d) 141 m

Q 04. Conservation of momentum in collision between particles can be understood from
(a) conservation of energy
(b) newton's first law only
(c) newton's $2^{\text {nd }}$ law only
(d) both newton's first and $2^{\text {nd }}$ law

Q 05. During inelastic collision, which remain conserved
(a) total kinetic energy
(b) total mechanical energy.
(c) total linear momentum
(d) speed of each body.

Q 06. For which of the following does the center of mass lies outside the body.
(a) a pencil
(b) a shot-put
(c) a dice
(d) a bangle

Q 07. Modulus of rigidity of ideal liquids is
(a) infinity
(b) zero
(c) unity
(d) some finite small non-zero constant value

Q 08. With increase in temperature, viscosity of gases
(a) decreases
(b) increases
(c) remain same
(d) become zero.

Q 09. An ideal gas undergoes isothermal process from some initial state I to final state f. choose the correct alternatives
(a) $d U=0$
(b) $d q=0$
(c) $d q=d U$
(d) $d Q=d w$

Q 010. Magnitude of velocity is equal to \qquad —.

Q 011. A body which mover under the effect of gravity only is known as \qquad _.

Q 012. Friction between two body is due to \qquad forces.

Q 013. Force and be defined as the rate of change of \qquad .

Q 014. Newton's law of gravitation follows \qquad .

Q 015. With increase in elastic fatigue, \qquad of body decreases.

Q 016. A substance which flows under the effect of external force is known as \qquad .

Q 017. The volume of a cube of the side 1 cm is equal to \qquad m^{3}.

Q 018. A vehicle moving with the speed of $18 \mathrm{~km} \mathrm{~h}^{-1}$ covers \qquad m in 1 s.

Q 019. The heat which converts the state of substance directly form solid to gases is known as \qquad _.

Q 020. Oscillatory motion is \qquad periodic motion.

Q 021. The length, breadth and the thickness of a rectangular sheet of metal are $4.234 \mathrm{~m}, 1.005 \mathrm{~m}$ and 2.01 cm respectively. Give the are and the volume of the sheet to correct significant figures.

Q 022. When the planet Jupiter is at a distance of 824.7 million kilometers from the earth. Its angular diameter is measured to be 35.72' of arc. Calculate the diameter of Jupiter.
Q 023. A three wheeler starts from rest, accelerates uniformly with $1 \mathrm{~ms}^{-2}$ on a straight road for 10 s , and then moves with uniform velocity. Plat the distance covered by the vehicle during the nth second versus n.

Q 024. A ceiling of a long hall is 25 m high. What is the maximum distance that a ball thrown with a speed of 40 ms^{-2} can go without hitting the ceiling of the hall.

Q 025. A rocket with a lift off mass 20000 kg is blasted upwards with an initial acceleration of $5 \mathrm{~ms}^{-2}$. Calculate the initial thrust of the blast.

Q 026. The bob of pendulum is released from a horizontal position. If the length of the pendulum is 1.5 m , what is the speed with which the bob arrives at the lowermost point, given that it is dissipated 55 of the initial energy against the air resistance.

Q 027. A car weighs 1800 kg . the distance between its front and back axles is 1.8 m . its center of gravity is 1.05 m behind the front axle. Determine the force exerted by the level ground on each front wheel and each back wheel.

Q 028. Suppose there existed a planet that went around the sun twice as fast as the earth. What would be its orbital size as compared to that of earth.

Q 029. A 50 kg girl wearing high heel shoes balances on a single heel. The heel is circular with a diameter 1.0 cm . what is the pressure exerted by the heel on the horizontal floor?

Q 030. The coefficient of the volume expansion of the glycerin is 49.10-5 ${ }^{\mathrm{K}}-1$. What is the fractional change inb its density for a $30^{\circ} \mathrm{C}$ rise in temperature.

Q 031. Show that for a particle in linear S.H.M the average kinetic energy over a period of oscillation equals the average potential energy over the same period

Q 032. A steel rod 100 cm long is clamped at its middle. The fundamental frequency of longitudinal vibrations of the rod are given to be 2.53 kHz . What is the speed of the sound in steel ?
Q 033. What are the fundamental quantities and derived quantities. Explain.
Q 034. How the random errors can be removed.
Q 035. Give any two applications of dimensional analysis. Explain any one with a suitable example.
Q 036. Show that the graph under velocity time curve gives displacement.
Q 037. Derive the relation for distance traveled in nth second.
Q 038. What is the difference between vector and scalar. Explain any 4 types of vectors.
Q 039. Explain zero vector. Give its properties.
Q 040. What is a projectile. Give any two examples.

Q 041. How newton's $1^{\text {st }}$ law resembles with the Galileo Galilei's law of inertia.
Q 042. Explain law of conservation of momentum.
Q 043. Explain friction. Give its types.
Q 044. Give advantages and disadvantage of friction.
Q 045. Derive an expression for the kinetic energy.
Q 046. Explain Power. Give and define its SI unit.
Q 047. Derive an expression for the angular momentum in Cartesian form.
Q 048. Give relation between kinetic energy and moment of inertia.
Q 049. Show that variation of gravity is more due to height than due to depth.
Q 050. Explain satellite and it principle for launching
Q 051. Explain hooks law and modulus of elasticity.
Q 052. What do you mean by pressure. explain it.
Q 053. Why does a metal bar appear hotter than a wooden bat at the same temperature.
Q 054. Explain zeroth law of thermodynamics.
Q 055. Write the assumptions made in kinetic theory of gases.
Q 056. What do you superposition of waves. Explain it when two waves are moving with (1) amplitude in same direction, (2) amplitude in opposite direction.

Q 057. Differentiate between periodic motion and oscillatory motion.

