DELHI PUBLIC SCHOOL, JAM MU

ASSIGNMENT (2017-2018)
IST PEROIDIC TEST
SUBJECT MATH
CLASS X

1. Show that one and only one out if $\mathrm{n}, \mathrm{n}+2, \mathrm{n}+4$ is divisible by 3 , Where n is any + ve integer
2. The Largest number which decides 546 and 764 leaving remainder 6 and 8 respectively.
3. Show that $(5-\sqrt[2]{3})$ is Irrational No.
4. Use Euclid's algorithm to find the HCF of 408 and 1032.
5. Find the quadratic polynomial the sum of whose zero's is $\sqrt{2}$ and their product is -12 . Hence find the zero's of the polynomial
6. It being given that 1 is a zero of the polynomial $\left(7 x-x^{3}-6\right)$ find the zeros
7. Divide $\left(6+19 x+x^{2}-6 x^{3}\right)$ by $\left(2+5 x-3 x^{2}\right)$
8. Draw the graph of $x^{2}-3 x-4$
9. Find all the zeros of the polynomial $\left(2 x^{4}-11 x^{3}+7 x^{2}+13 x-7\right)$ it being that two of its zeros are $(3+\sqrt{2})$ and $(3-\sqrt{2})$
10. Solve for x and $\mathrm{y} \frac{b x}{a}-\frac{a y}{b}+\mathrm{a}+\mathrm{b}=0$

$$
b x-a y+2 a b=0
$$

11. Solve for a and y $\frac{a}{x}-\frac{b}{y}=0, \frac{a b^{2}}{b}+\frac{a^{2} b}{b}=\mathrm{a}^{2}+\mathrm{b}^{2}$
12. A two digit number is such that the product of its digit is 14 . If 45 is added to the number the digits interchange their places find the number
13.8 men and 12 boys can finish a piece of work is 5 days while 6 men and 8 boys can finish it is 7 days find the time taken by 1 man alone and that by 1 boy alone to finish the work.
14.90% and 97% pure acid solution are mixed to obtain 21 liters of 95% pure acid solution find the quality of each type of acid to be mixed to form the mixture.
15.Find the value of m and n which the following system of linear equation has infinity many solution

$$
\begin{aligned}
& 3 x+4 y=12 \\
& (m+n) x+2(m-n) y=5 m-1
\end{aligned}
$$

DELHI PUBLIC SCHOOL, JAM MU

ASSIGNMENT (2017-2018)
IST PEROIDIC TEST
SUBJECT MATH
CLASS X

1. If ABCD is a cycle quadrilateral and $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are its interior angle then prove that

$$
\text { 1. } \tan \frac{A}{2}+\tan \frac{B}{2}=\cot \frac{C}{2}+\cot \frac{D}{2}
$$

2. Prove that $\frac{\sin \theta}{\cot \theta+\operatorname{cosec} \theta}-2+\frac{\sin \theta}{\cot \theta-\operatorname{cosec} \theta}$
3. If $\operatorname{cosec} \theta=\mathrm{x}+\frac{1}{4 x}$, Prove that $\operatorname{cosec} \theta+\cot \theta=2 \mathrm{x}$ or $\frac{1}{2 x}$
4. If $\operatorname{cosec} \theta-\sin \theta=\mathrm{a}$ and $\sec \theta-\cot \theta=b$, Prove that ${ }^{\mathrm{arb} 2}\left({ }^{\mathrm{a} 2}+{ }^{\mathrm{b} 2}+3\right)=1$
5. If Tan $A=q \tan B$ and $\operatorname{Sin} A=P \operatorname{Sin} B$, Prove that $\operatorname{Cos}^{2} A=\frac{P^{2}-1}{q^{2}-1}$
6. Prove that $\sec 4 \theta(1-\sin 4 \theta)-2 \tan 2 \theta=1$
7. Prove that $2(\sin 6 \theta+\cos 6 \theta)-3(\sin 4 \theta+\cos 4 \theta)+1=0$
8. Prove that $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\tan \theta+\cot \theta$
9. If $\cot \theta=\frac{3}{4}$, Prove that $\sqrt{\frac{\sec \theta-\operatorname{cosec} \theta}{\sec \theta+\operatorname{cosec} \theta}}=\frac{1}{\sqrt{7}}$
10. For which value of a do the pair of linear equations $a x+y=a^{2}$ and $x+a y=1$

Solve for x and y
a. Unique solution
b. Infinitely many solutions
c. No solution
11. Solve for x and $\mathrm{y}: \quad \mathrm{mx}-\mathrm{ny}=\mathrm{m} 2+\mathrm{n} 2$
i. $x-y=2 n$
12. Find the zeros of the polynomial $2 \mathrm{~s}^{2}-(1+\sqrt[2]{2}) \mathrm{s}+\sqrt{2}$ and verify the relation between the zeros and the coefficients.
13.If one zero of the polynomials $(a 2+9) x 2+13 x+6 a$ is reciprocal of the other find the value of a
14.If n is an odd positive integer show that ($\mathrm{n} 2-1$) is divisible by 8
15.Find the HCF of 612 and 1314 using prime factorization and Euclid's algorithm.

