DELHI PUBLIC SCHOOL,JAMMU ASSIGNMENT NO. 1

(MATHEMATICS)

CLASS - $\mathbf{1 2}^{\text {TH }}$

Section A(1 Mark each)

1. Find the number of all onto functions from the set $\{1,2,3, \ldots . . n\}$ to itself.
2. Find the value of $\sin \sin \left[\frac{\pi}{3}-\sin ^{-1} \frac{-1}{2}\right]$
3. If A is a square matrix of order 3 such that $|A|=\delta$, then write the value of $|-A|$
4. Find the value of x from the following : $\left[\begin{array}{cc}2 x-3 & 5 \\ 3 & y\end{array}\right]=\left[\begin{array}{cc}6 & 5 \\ 3 & -2\end{array}\right]$

SECTION B (2 Marks each)
5. Show that the relation R on the set $A=\{x \in Z: 0 \leq x \leq 12\}$ is given by
$\mathrm{R}=\{(\mathrm{a}, \mathrm{b}):|a-b|$ is a multiple of 4$\}$ is an equivalence relation.
6. Solve $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$
7. Show that $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$ satisfies the equation $x^{2}-6 x+17=0$
8.Find $A+A^{\top}$, if $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$

SECTION C (4 MARKS EACH)
9.Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$ defined by $f(x)=\left\{\begin{array}{c}\frac{n+1}{2}, \text { if } n \text { is odd } \forall n \epsilon N \\ \frac{n}{2}, \text { if } n \text { is even }\end{array}\right.$. find whether the function f is bijective .
10.Prove that $\cot ^{-1}\left[\frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\right]=\frac{\pi}{2}, \mathrm{x} \in\left(0, \frac{\pi}{4}\right)$
11.Using elementary transformation, find the inverse of a matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3\end{array}\right]$
12.Prove that : $\left|\begin{array}{ccc}a+b+2 c & a & b \\ c & b+c+2 a & b \\ c & a & c+a+2 b\end{array}\right|=2(\mathrm{a}+\mathrm{b}+\mathrm{c})^{3}$
13.If the operation * on $\mathrm{Q}-\{1\}$ defined by $\mathrm{a}+\mathrm{b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$ for $\mathrm{all} \mathrm{a}, \mathrm{b} \in \mathrm{q}-\{1\}$, then i$)$ Is * is commutative ii) Is * is associative iii)find identity element iv) find the inverse of a for each $a \in Q-\{1\}$

SECTION C (6 MARKS EACH)

14.Consider $f: R \rightarrow[-5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible and $f^{-1}(y)=\left(\frac{\sqrt{y+6-1}}{3}\right)$
15.If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$, Prove that $x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}=2 x y z$
16.Use product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$ to solve the system of equations $x-y+2 z=1,2 y-3 z=1$,
$3 x-2 y+4 z=2$

