DELHI PUBLIC SCHOOL, JAMMU
 REVISION SHEET(Cycle Test -I)
 SESSION: 2018-19

Class: IX

Sub: Mathematics

TOPICS :

1. Number System

2. Polynomials.
3. Coordinate Geometry

4. Lines and Angles

Objective Type

1. Find Value of $\left(16^{\frac{1}{4}}\right)^{3}$

2 Find zeroes of the polynomial $\mathrm{P}(\mathrm{x})=\mathrm{x}^{2}-25$.
3.Find 5 rational numbers between 1 and $\frac{-1}{3}$.
4. If the point $(5,4)$ lies on the graph of the equation $2 y=b x+5$

Very Short type Questions:-

5. Plot a point $P(-5,6)$ on graph, draw perpendicular $P M$ on X-axis, $P N$ on Y-axis. Name the coordinates of M and N.

6 for what value of m is $x^{3}-2 m x^{2}+16$ divisible by $x-2$
7. Prove that if two lines intersects then vertically opposite angles are equal.
8.find the value of b.If $x=5+2 \sqrt{3}$, find value of $x-\frac{1}{x}$.
9.If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are all non zeroes and $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$. prove that $\frac{x^{2}}{y z}+\frac{y^{2}}{x z}+\frac{z^{2}}{x y}=3$

Short Type Questions:-

10.Rationalise the denominator of $\frac{1}{\sqrt{5-\sqrt{2-\sqrt{3}}}}$
11. Represent $\sqrt{5}$ and $\sqrt{5.3}$ on number line.
12. Factorise $2 x^{3}+x^{2}-2 x-1$
13. Find a and b if $x+2$ and $x-2$ are factors of $x^{3}+a x^{2}+2 x-3 x+b$
$14 . B O$ and $C O$ are interior bisectors of angles B and C of $\triangle A B C$. Prove that $\angle B O C=90^{\circ}+\frac{1}{2} \angle A$
15.Plot the points $(5,4),(-5,4),(-5,-4)$ and $(5,-4)$ join them to form a figure name and find area.
16.Draw the figure with vertices $(-5,5),(-6,0),(-5,-5),(-2,0)$. Name the fig. and find area.
17. In $\triangle P Q R$, $\mathrm{PT} \perp \mathrm{QR}$ and PS is bisector of $\angle P$. If $\angle Q=60^{\circ}$ and $\angle R=30^{\circ}$, Find $\angle T P S$.

Long Type Questions

18. Plot a point $(1,2),(-3,0)$ and $(4,0)$ on the graph. Join to form figure. Name the figure and find area.
19. In Fig, prove that $A B \| C D$ and $C D \| E F$.

20. $A B$ and $C D$ are intersected by transversal $E F$ at G and H respectively. If $G M$ is bisector of $\angle B G H$ and $H N$ is bisector of $\angle G H C$. If $\mathrm{GM} \| \mathrm{HN}$ prove that $\mathrm{AB} \| \mathrm{CD}$.
