REVISION SHEET FOR CYCLE TEST 1

SESSION 2018-19

CLASS - XII

SUBJECT- MATHEMATICS
TOPICS:

- RELATION AND FUNCTION
- INVERSE TRIGONOMETRIC FUNCTIONS
- MATRICES
- DETERMINANTS

VERY SHORT QUESTIONS

1.Let $S=\{a, b, c\}$, find the total number of binary operations on S.
2.If $\sin \left(\sin ^{-1} \frac{1}{2}+\cos ^{-1} x\right)=1$, then find the value of x
3.If $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{ll}3 & 1 \\ 2 & 5\end{array}\right]=\left[\begin{array}{ll}7 & 11 \\ k & 23\end{array}\right]$, then find the value of k.
4. If A is a square matrix of order 3 such that $|\operatorname{adj} A|=64$, then find $|A|$
5. Find the value of $\sin ^{-1}\left(\sin \frac{4 \pi}{5}\right)$

(B) SHORT QUESTIONS

6. Let $\mathrm{A}=\{\mathrm{x} \in \mathrm{R}:-1 \leq x \leq 1\}=\mathrm{B}$. Show that $\mathrm{f}: \mathrm{A} \rightarrow B$ given by $\mathrm{f}(\mathrm{x})=\mathrm{x}|x|$ is a bijection.
7.Write $\cot ^{-1}\left(\frac{1}{\sqrt{x^{2}-1}}\right),|x|>1$ in simplest form.
8.Express the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5\end{array}\right]$ as the sum of a symmetric and a skew-symmetric matrix
7. Find the value of α so that the points (1,-5),(-4,5) and ($\alpha, 7$) are collinear.
8. If the operation * on $Q-\{1\}$, defined $b y a * b=a+b-a b$ for $a l l a, b \in Q-\{1\}$, then a) is * commulative b) is * associative c)find the identity element d) Find the inverse of a for each $a \in Q-\{1\}$
11.Show that: $\tan \left(\frac{1}{2} \sin ^{-1} \frac{3}{4}\right)=\frac{4-\sqrt{7}}{3}$
9. $\mathrm{f} \mathrm{A}=\left[\begin{array}{cc}o & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$ and I is the identity matrix of order 2 , then show that:
$I+\mathrm{A}=(\mathrm{I}-\mathrm{A})\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
10. Using properties of determinant, prove that: $\left|\begin{array}{ccc}1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c\end{array}\right|=a b+b c+c a+a b c$
11. Show that $A=\left[\begin{array}{cc}2 & -3 \\ 3 & 4\end{array}\right]$ satisfies the equation $x^{2}-16 x+17=0$. Hence find A^{-1}
12. Solve for $\mathrm{x}: \cos ^{-1} \frac{x^{2}-1}{x^{2}+1}+\tan ^{-1} \frac{2 x}{x^{2}-1}=\frac{2 \pi}{3}$
13. Show that $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{N}$, given by $f(x)=\left\{\begin{array}{l}x+1, \text { xis odd } \\ x-1, x \text { is even }\end{array}\right.$ is both one one and onto.

LONG QUESTIONS

17. Consider $f: R+\rightarrow[5, \infty)$ given by $f(x)=9 x^{2}+6 x-5$. Show that f is invertible and $f^{-1}(y)=\left(\frac{\sqrt{y+6}-1}{3}\right)$.
18. Prove that : $\tan \left(\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)+\tan \left(\frac{\pi}{4}-\frac{1}{2} \cos ^{-1} \frac{a}{b}\right)=\frac{2 b}{a}$
19. Use product $\left[\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & -3 \\ 3 & -2 & 4\end{array}\right]\left[\begin{array}{ccc}-2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2\end{array}\right]$. To solve the system of equations:
$x-y+2 z=1,2 y-3 z=1,3 x-2 y+4 z=2$.
20. Find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$ using elementary operations.
21. Given a non empty set X. Let * $P(X) X P(X) \rightarrow P(X)$ be defined as $A * B=(A-B) U(B-A)$ for all $A, B E$ $P(X)$.Show that the empty set \emptyset is the identity element and all the elements A of $P(x)$ are invertible with $A^{-1}=A$.
