DELHI PUBLIC SCHOOL, JAMMU Assignment SESSION : 2019-20

<u>SECTION – A</u>

Q1.	The H.C.F. of 95 and 152 is					
	a) 57	b) 1	c) 19	d) 38		
Q2.	The decimal expansion of the rational number $\frac{14587}{1250}$ will terminate after					
	a) One decimal place		b) Two decimal pla	ace		
	c) Three decimal place		d) Four decimal pl	lace		
Q3.	The smallest number by	nallest number by which $\sqrt{27}$ should be multiplied so as to get a rational				
	number 1s 1	_	_			
	a) √27	b) $3\sqrt{3}$	c) $\sqrt{3}$	d) 3		
Q4.	If n is any natural number, then $6^n - 5^n$ always ends with					
	a) 1	b) 3	c) 5	d) 7		
Q5.	The LCM and HCF of two rational numbers are equal, then the numbers must					
	a) Prime	b) Coprime	c) Composite	d) Equal		
Q6.	If α, β are the zeroes of the polynomial $f(x) = x^2 + x + 1$, then $\frac{1}{\alpha} + \frac{1}{\beta} =$					
	a) 1	b) -1	c) 0	d) None of these		
Q7.	If the sum of the zeroes	f the sum of the zeroes of the polynomial $f(x) = 2x^2 - 3kx^2 + 4x - 5$ is 6, the value of the sum of the zeroes of the polynomial $f(x) = 2x^2 - 3kx^2 + 4x - 5$ is 6, the value of the sum of the zeroes of the polynomial $f(x) = 2x^2 - 3kx^2 + 4x - 5$ is 6, the value of the polynomial $f(x) = 2x^2 - 3kx^2 + 4x - 5$ is 6.				
	of k is					
	a) 2	b) 4	c) -2	d) -4		
Q8.	If the product of zeroes	the product of zeroes of the polynomial $f(x)=9x^2-6x^2+11x-6$ is 4, in a =				
	then a =					
	a) $\frac{3}{2}$	b) $\frac{-3}{2}$	c) $\frac{2}{3}$	d) $\frac{-2}{3}$		
Q9.	If the polynomial $f(x) = ax^3 + bx - c$ is divisible by the polynomial					

	$g(x) = x^2 + bx + c$, then $ab =$					
	a) 1	b) $\frac{1}{c}$	c) -1	$d) = \frac{-1}{c}$		
Q10.	If one root of the polynomial $ff(x) = 5x^2 + 13x + k$ is reciprocal of the other, then the					
	value of k is					
	a) 0	b) 5	c) $\frac{1}{6}$	d) 6		
Q11.	If $(1 + tax\theta + sex\theta)(1 + \cot\theta - \cos ec\theta) =$					
	a) 0	b) 1	c) 2	d) =-1		
Q12.	$(\operatorname{SecA} + \operatorname{TanA}) (1 - \sin A) =$					
	a) Sec A	b) Sin A	c) Cosex A	d) Cos A		

SECTION – B

- Q13. Use enlids algorithm to find the HCF of 4052 and 12576.
- Q14. If two zeroes of the polynomials are $\sqrt{2}$ and $-\sqrt{2}$ of $2x^4 3x^3 + 6x 2$, find others.
- Q15. Given 15 $\cot A = 8$, find SinA and SecA.
- Q16. Divide $3x^3 + x^2 + 2x + 5$ by $1 + 2x + x^2$
- Q17. Prove that $\frac{CotA CosA}{CotA + CosA} = \frac{Co \sec A 1}{Co \sec A + 1}$

SECTION - C

- Q18. Use ecmlids divisions Lemma to show that the square of any positive integer is either of the form 3m or 3m +1 for some integer m.
- Q19. Find the zeroes of the polynomial $f(x) = x^3 5x^2 16x + 80$, if its two zeroes are equal is magnitude but opposite is sign.
- Q20. If $Co \sec A = \sqrt{2}$, find the value of $\frac{2\sin^2 A + 3\cot^2 A}{4\tan^2 A \cos^2 A}$
- Q21. Prove that : $\frac{1}{\text{CosecA} \text{CotA}} \frac{1}{\text{SinA}} = \frac{1}{\text{SinA}} = \frac{1}{\text{CosecA} + \text{CotA}}$

SECTION – D

Q22. If the polynomial $x^4 - 6x^3 + 16x^2 - 25x + 10$ is divided by another polynomial $x^2 - 2x + k$, the reminder comes out to be x + a, find the k and a.

Q23. Evaluate :
$$\frac{\cos 58^{\circ}}{\sin 32^{\circ}} + \frac{\sin 22^{\circ}}{\cos 68^{\circ}} - \frac{\cos 38^{\circ} \operatorname{Cosec} 52^{\circ}}{\tan 18^{\circ} \tan 35^{\circ} \tan 60^{\circ} \tan 72^{\circ} \tan 55^{\circ}}$$

Q24. What must be subtracted from $8x^4 + 14x^3 - 2x^2 + 7x - 0$, so that the resulting polynomial is exactly divisible by $4x^2 + 3x - 2$.

Q25. Prove that :
$$\frac{\sin\theta - \cos\theta + 1}{\sin\theta + \cos\theta - 1} = \frac{1}{\sec\theta - \tan\theta}$$