Delhi Public School, Jammu

Assignment For Half Yearly Examination 2017-18

Class- XII

Sub: M athematics

SECTION -A

Q1.If $\left|\begin{array}{cc}2 x & x+3 \\ 2(x+1) & x+1\end{array}\right|=\left|\begin{array}{ll}1 & 5 \\ 3 & 3\end{array}\right|$ then write the value of x .

Q2.Check the continuity of the function $\mathrm{f}(\mathrm{x})=\left\{\frac{|x|}{x}\right.$ if $\mathrm{x} \neq 0$
0 , if $x=0$
Q3.Integrate $\left(\frac{a}{\sqrt{x}}+2 b \sqrt[3]{x^{2}}\right)$ w.r.t x.
Q4. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{f}(\mathrm{x})=3 x^{2}-5$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $\mathrm{g}(\mathrm{x})=\frac{x}{x^{2}+1}$. Find fog.

SECTION-B

Q5. Show that the function $f(x)=\tan x-x$ is always increasing in $x \varepsilon R$
Q6. Differentiate $\log (1+\mathrm{x})$ with respect to $\sin ^{-1} \theta$
Q7.Evaluate $\int_{e}^{e^{2}} \frac{1}{x \log x} d x$
Q8.For what value of c, M ean value theorem is applicable for the function $f(x)=x+\frac{1}{x}$ on $[1,3]$
Q9.Find $\frac{d y}{d x}$, if $y=\tan ^{-1}\left(\frac{1-\cos x}{1+\cos x}\right)$
Q10.Using derivative ,find the approximate percentage increase in the area of a circle if its radius is increased by 2%.

Q11.Evaluate $\int x e^{x^{2}} \mathrm{dx}$
Q12.Find the points on the curve $y=x^{3}$ at which the slope of the tangent is equal to y-coordinate of the Point.

SECTION-C

Q13.Prove that $2 \tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-11} \frac{1}{7}=\sin ^{-1}\left(\frac{31}{25 \sqrt{2}}\right)$
Q14.If $y=(\sin x)^{x}+\sin ^{-1} \sqrt{x}$, find $d y / d x$.
Q15.Evaluate $\int_{2}^{5}\left(3 x^{2}-5\right) \mathrm{dx}$ as limit of sums.
Q16.Solve the differential equation $\cos ^{2} \mathrm{x} \frac{d y}{d x}+\mathrm{y}=\tan \mathrm{x}$

Q17.If $\mathrm{F}(\mathrm{x})=\left(\begin{array}{ccc}\cos x & x & 1 \\ 2 \sin x & x & 2 x \\ \sin x & x & x\end{array}\right)$, then find $\lim _{x \rightarrow 0} \frac{F(x)}{x^{2}}$
Q18.The function $\mathrm{f}(\mathrm{x})$ is defined as $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}x^{2}+a x+b, 0 \leq x<2 \\ 3 x+2,2 \leq x \leq 4 \\ 2 a x+5 b, 4<x \leq 8\end{array}\right\}$ If $\mathrm{f}(\mathrm{x})$ is continuous in[0,8],Find the values of a and b.

Q19.Prove using properties of determinant $\left|\begin{array}{ccc}a+b x^{2} & c+d x^{2} & p+q x^{2} \\ a x^{2}+b & c x^{2}+d & p x^{2}+q \\ u & v & w\end{array}\right|=\left(x^{4}-1\right)\left|\begin{array}{lll}b & d & q \\ a & c & p \\ u & v & w\end{array}\right|$
Q20.Evaluate $\int x-3 \sqrt{x^{2}+3 x-18} \mathrm{dx}$.
Q21.Form the differential equation of the family of circles in the first quadrant which touches the coordinate axes.

Q22.Let $\mathrm{f}: \mathrm{N} \rightarrow N$ such that $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{c}\frac{n+1}{2}, \text { if } n \text { is odd } \\ \frac{n}{2}, \text { if } n \text { is even }\end{array}\right\}$ for all $\mathrm{n} \varepsilon N$. State whether the function is bijective or Not.

Q23.Prove that $\cot ^{-1}\left[2 \tan \left(\cos ^{-1} \frac{8}{17}\right)\right]+\tan ^{-1}\left[2 \tan \left(\sin ^{-1} \frac{8}{17}\right)\right]=\tan ^{-1}\left(\frac{300}{161}\right)$

SECTION-D

Q24.If $A=\left(\begin{array}{ccc}1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1\end{array}\right)$.find A^{-1} and hence solve the system of equqtions. $X+2 y+z=4,-x+y+z=0$, $x-3 y+z=2$.

Q25.Let x be a non empty set. $P(x)$ be its power set.Let * be an operation defined on elements of $P(x)$ by, $A * B=A \cap B$, for all $A, B \varepsilon P(x)$. Then
i)Is * commutative? Ii)Is* associative iii)Find the identity element in $\mathrm{P}(\mathrm{x})$ w.r.t* iv)Prove that * is a binary operation in $P(x) \quad v)$ Find all the invertible elements of $P(x)$.

Q26.An open box with square base is to be made out of a given quantity of sheet of area a^{2} sq. units. Show that the maximum volume of the box is $\frac{a 3}{6 \sqrt{3}}$

Q27.Evaluate $\int_{\pi / 6}^{\pi / 3} \frac{1}{\sqrt{1+\operatorname{tanx}}} \mathrm{dx}$
Q28.Solve the differential equation: $\frac{d y}{d x}=\frac{(2 y-x)}{2 y+x}$, if $\mathrm{y}=1$ when $\mathrm{x}=1$
Q29.Let $\mathrm{f}: \mathrm{N} \rightarrow \mathrm{S}$ be a function defined as $\mathrm{f}(\mathrm{x})=4 \mathrm{x}^{2}+12 \mathrm{x}+15$. Show that f : $\mathrm{N} \rightarrow \mathrm{S}$ where S is the range of f , is invertible. Also find the inverse of f. Hence find $f^{-1}(31)$.

