Delhi Public School, Jammu

Assignment For Half Yearly Examination 2017-18

Class-XII

Sub: Mathematics

SECTION –A

Q1.If $\begin{vmatrix} 2x & x+3 \\ 2(x+1) & x+1 \end{vmatrix} = \begin{vmatrix} 1 & 5 \\ 3 & 3 \end{vmatrix}$ then write the value of x.

Q2.Check the continuity of the function $f(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0 \end{cases}$

0,if x=0

Q3.Integrate $\left(\frac{a}{\sqrt{x}} + 2b\sqrt[3]{x^2}\right)$ w.r.t x.

Q4.Let f:R \rightarrow R be defined by f(x)=3x²-5 and g:R \rightarrow R be defined by g(x)= $\frac{x}{x^{2}+1}$.Find fog.

SECTION-B

Q5.Show that the function f(x) = tanx-x is always increasing in x ϵ R

Q6. Differentiate log(1+x) with respect to $sin^{-1}\Theta$

Q7.Evaluate $\int_{e}^{e^2} \frac{1}{x \log x} dx$

Q8.For what value of c, Mean value theorem is applicable for the function $f(x)=x+\frac{1}{x}$ on [1,3]

Q9.Find
$$\frac{dy}{dx}$$
 if $y = \tan^{-1}\left(\frac{1-\cos x}{1+\cos x}\right)$

Q10. Using derivative , find the approximate percentage increase in the area of a circle if its radius is increased by 2%.

Q11.Evaluate $\int x e^{x^2} dx$

Q12. Find the points on the curve $y=x^3$ at which the slope of the tangent is equal to y-coordinate of the Point.

SECTION-C

Q13.Prove that $2\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\frac{1}{7} = \sin^{-1}\left(\frac{31}{25\sqrt{2}}\right)$

Q14.If $y = (sinx)^x + sin^{-1}\sqrt{x}$, find dy/dx.

Q15.Evaluate $\int_{2}^{5} (3x^2 - 5) dx$ as limit of sums.

Q16.Solve the differential equation $\cos^2 x \frac{dy}{dx} + y = \tan x$

Q17.If F(x) =
$$\begin{pmatrix} cosx & x & 1\\ 2sinx & x & 2x\\ sinx & x & x \end{pmatrix}$$
, then find $\lim_{x \to 0} \frac{F(x)}{x^2}$

Q18. The function f(x) is defined as f(x) = $\begin{cases} x^2 + ax + b, 0 \le x < 2\\ 3x + 2, 2 \le x \le 4\\ 2ax + 5b, 4 < x \le 8 \end{cases}$. If f(x) is continuous in[0,8], Find the

values of a and b.

Q19.Prove using properties of determinant
$$\begin{vmatrix} a + bx^2 & c + dx^2 & p + qx^2 \\ ax^2 + b & cx^2 + d & px^2 + q \\ u & v & w \end{vmatrix} = (x^4 - 1) \begin{vmatrix} b & d & q \\ a & c & p \\ u & v & w \end{vmatrix}$$

Q20.Evaluate $\int x - 3\sqrt{x^2 + 3x - 18} dx$.

Q21.Form the differential equation of the family of circles in the first quadrant which touches the

coordinate axes.

Q22.Let $f:N \rightarrow N$ such that $f(x) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$ for all $n \in N$.State whether the function is bijective or

Not.

Q23.Prove that
$$\cot^{-1}[2\tan(\cos^{-1}\frac{8}{17})] + \tan^{-1}[2\tan(\sin^{-1}\frac{8}{17})] = \tan^{-1}(\frac{300}{161})$$

SECTION-D

Q24.If A = $\begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{pmatrix}$. find A⁻¹ and hence solve the system of equations. X+2y+z=4,-x+y+z=0,

x-3y+z=2.

Q25.Let x be a non empty set. P(x)be its power set.Let * be an operation defined on elements of P(x) by, $A^*B=A\cap B$, for all A, B $\epsilon P(x)$. Then

i)Is * commutative? Ii)Is * associative iii)Find the identity element in P(x) w.r.t * iv)Prove that * is a binary operation in P(x) v)Find all the invertible elements of P(x).

Q26.An open box with square base is to be made out of a given quantity of sheet of area a^2 sq. units. Show that the maximum volume of the box is $\frac{a_3}{6\sqrt{3}}$

Q27.Evaluate $\int_{\pi/6}^{\pi/3} \frac{1}{\sqrt{1+tanx}} dx$

Q28.Solve the differential equation: $\frac{dy}{dx} = \frac{(2y-x)}{2y+x}$, if y=1 when x=1

Q29.Let $f:N \rightarrow S$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \rightarrow S$ where S is the range of f, is invertible. Also find the inverse of f. Hence find $f^{-1}(31)$.