Session 2018-19

QUESTION BANK

MATHEMATICS

CONTENTS

1. Real Number
2. Polynomials
3. Pair of Linear Equations in Two Variables
4. Quadratic Equations
5. Coordinate Geometry
6. Triangles
7. Circles
8. Introduction to Trigonometry
9. Heights and Distances

CHAPTER - 1 REAL NUMBERS

Q1. There is a circular path around a sports field. Sonia takes $\mathbf{1 8}$ minutes to drive one round of the field, while Ravi takes $\mathbf{1 2}$ minutes for the same. Suppose they both start from the same point and at the same time, and go in the same direction. After how many minutes will they meet again at the starting point?

Sol. To find the time after which tye meet again at the starting point, we have to find LCM of 18 and 12 minutes. We have
$\begin{aligned} 18 & =2 \times 3^{2} \\ \text { and } \quad 12 & =2^{2} \times 3\end{aligned}$
Therefore, LCM of 18 and $12=2^{2} \times 3^{2}=36$

2	18
3	9
3	3
	1

2	12
2	6
3	3
	1

So, they will meet again at the starting point after 36 minutes.
Q2. If \mathbf{n} is an odd positive integer, show that $\left(n^{2}-1\right)$ is divisible by 8 .
Sol. We know that an odd positive integer n is of the form $(4 q+1)$ or $(4 q+3)$ for some integer q.

Case-I \quad When $\mathrm{n}=(4 \mathrm{q}+1)$
In the case $n 2-1=(4 q+1)^{2}-1=16 q^{2}+8 q=8 q(2 q+1)$
Which is clearly divisible by 8 .
Case - II When $\mathrm{n}=(4 \mathrm{q}+3)$
In this case, we have
$\mathrm{n}^{2}-1=(4 \mathrm{q}+3)^{2}-1=16 \mathrm{q}^{2}+24 \mathrm{q}+8=8\left(2 \mathrm{q}^{2}+3 \mathrm{q}+1\right)$
which is clearly divisible by 8 .
Hence $\left(n^{2}-1\right)$ is divisble by 8 .
Q3. The LCM of two numbers is 14 times their HCF. The sum of LCM and HCF is 600 . If one number is $\mathbf{2 8 0}$, then find the other number.

Sol. Let HCF of the number be x then according to question LCM of the number will be 14 x
And $\quad x+14 x=600 \Rightarrow 15 x=600 \quad \Rightarrow \quad x=40$
Then $\mathrm{HCF}=40$ and $\mathrm{LCM}=14 \times 40=560$
$\therefore \quad$ LCM \times HCF $=$ Product of the numbers
$560 \times 40=280 \times$ Second number $\Rightarrow \frac{560 \times 40}{280}=80$
Then other number is 80 .

Q4. Show that $5-\sqrt{3}$ is an irrational number.

Sol. Let us assume that $5-\sqrt{3}$ is rational.
So, $5-\sqrt{3}$ may be written as

$$
\begin{aligned}
& 5-\sqrt{3}=\frac{p}{q}, \text { where } \mathrm{p} \text { and } \mathrm{q} \text { are integers, having no common factor except } 1 \text { and } \mathrm{q} \neq 0 \\
\Rightarrow & 5-\frac{p}{q}=\sqrt{3} \quad \Rightarrow \sqrt{3}-\frac{5 q-p}{q}
\end{aligned}
$$

Since $\frac{5 q-p}{q}$ is a rational number as p and q are integers.
$\therefore \sqrt{3}$ is also a rational number which is a contradiction.
Thus, our assumption is wrong.
Hence, $5-\sqrt{3}$ is an irrational number.
Q5. Find the largest positive integer that will divide 398,436 and 542 leaving remainders 7, 11 and 15 respectively.

Sol. It is given that on dividing 398 by the required number, there is a remainder of 7. This means that $398-7=391$ is excactly divisible by the required number. In other words, required number is a factor of 391 .

Similarly, required positive integer is factor of $436-11=425$ and $542-15=527$
Clearly, required number is the HCF of 391, 425 and 527.
Using the factor tree, we get the prime factorisations of 391,425 and 527 as follows :
$391=17 \times 23,425=5^{2} \times 17$ and $527=17 \times 31$
\therefore HCF of 391,425 and 527 is 17.
Hence, required number $=17$

CHAPTER - 2 : POLYNOMIALS

Q6. If the product of two zeroes of the polynomial $p(x)=2 x^{3}+6 x^{2}-4 x+9$ is 3 ,, then find its third zero.

Sol. Let α, β, γ be the roots of the given polynomial and $\alpha \beta=3$

Then, $\alpha \beta \gamma=-\frac{9}{2}$
$\Rightarrow \quad 3 \times \gamma=\frac{-9}{2}$
or $\quad \gamma=\frac{-3}{2}$

Q7. If α and β are the zeros of the quadratic polynomials $f(x)=2 x^{2}-5 x+7$, find a polynomial whose zeros are $2 \alpha+3 \beta$ and $3 \alpha+2 \beta$.

Sol. Since $\alpha+\beta$ are the zeros of the quadratic polynomial $f(x)=2 x^{2}-5 x+7$

$$
\therefore \quad \alpha+\beta=\frac{-(-5)}{2}=\frac{5}{2} \text { and } \alpha \beta=\frac{7}{2}
$$

Let S and P denote respectively the sum and products of the zeros of the required polynomial.

Then, $S=(2 \alpha+3 \beta)+(3 \alpha+2 \beta)=5(\alpha+\beta)=5 \times \frac{5}{2}=\frac{25}{2}$
and $\quad P=(2 \alpha+3 \beta)(3 \alpha+2 \beta)$
$\Rightarrow \quad \mathrm{P}=6 \alpha^{2}+6 \beta^{2}+13 \alpha \beta=6 \alpha^{2}+6 \beta^{2}+12 \alpha \beta+\alpha \beta$

$$
=6\left(\alpha^{2}+\beta^{2}+2 \alpha \beta\right)+\alpha \beta=6(\alpha+\beta)^{2}+\alpha \beta
$$

$\Rightarrow \quad \mathrm{P}=6 \mathrm{x}\left(\frac{5}{2}\right)^{2}+\frac{7}{2}=\frac{75}{2}+\frac{7}{2}=41$

Hence, the required polynomial $g(x)$ is given by

$$
g(x)=k\left(x^{2}-s x+P\right)
$$

or $\quad g(x)=k\left(x^{2}-\frac{25}{2} x+41\right)$, where k is any non-zero real number.
Q8. What must be subtracted from $p(x)=8 x^{4}+14 x^{3}-2 x^{2}+7 x-8$ so that the resulting polynomial is exactly divisble by $g(x)=4 x^{2}+3 x-2$?

Sol. Let y be subtracted from polynomial $\mathrm{p}(\mathrm{x})$
$\therefore \quad 8 \mathrm{x}^{4}+14 \mathrm{x}^{3}-2 \mathrm{x}^{2}+7 \mathrm{x}-8-\mathrm{y}$ is exactly divisble by $\mathrm{g}(\mathrm{x})$

Now, $\quad 4 x ^ { 2 } + 3 x - 2 \longdiv { 8 x ^ { 4 } + 1 4 x ^ { 3 } - 2 x ^ { 2 } + 7 x - 8 - y }$

$$
\begin{aligned}
& \frac{-8 x^{4} \pm 6 x^{3} \mp 4 x^{2}}{8 x^{3}+2 x^{2}+7 x-8-y} \\
& \frac{-8 x^{3} \pm 6 x^{2} \mp 4 x}{-4 x^{2}+11 x-8-y} \\
& \frac{ \pm 4 x^{2} \mp 3 x \mp 2}{14 x-10-y}
\end{aligned}
$$

$\therefore \quad$ Remainder should be 0 .

$$
\begin{array}{ll}
& 14 x-10-y=0 \\
\text { or } \quad 14 x-10=y \quad \text { or } y=14 x-10
\end{array}
$$

$\therefore \quad(14 \mathrm{x}-10)$ should be subtracted from $\mathrm{p}(\mathrm{x})$ so that it will be exactly divisible by g(x)

Q9. Obtain the zeros of quadratic polynomial $\sqrt{3} x^{2}-8 x+4 \sqrt{3}$ and verify the relation between its zeros and coefficients.

Sol. We have,

$$
\begin{aligned}
& f(x)=\sqrt{3} x^{2}-8 x+4 \sqrt{3} \\
& =\sqrt{3} x^{2}-6 x-2 x+4 \sqrt{3} \\
& =\sqrt{3} x(x-2 \sqrt{3})-2(x-2 \sqrt{3}) \\
& \Rightarrow \quad(x-2 \sqrt{3})(\sqrt{3} x-2)=0 \\
& \mathrm{x}=2 \sqrt{3} \quad \text { or } \quad \mathrm{x}=\frac{2}{\sqrt{3}}
\end{aligned}
$$

So, the zeros of $f(x)$ are $2 \sqrt{3}$ and $\frac{2}{\sqrt{3}}$

Sum of zeros $2 \sqrt{3}+\frac{2}{\sqrt{3}}=\frac{8}{\sqrt{3}}=-\frac{\text { Coefficient of } x}{\text { Coefficient of } x^{2}}$

Product of the zeros $=2 \sqrt{3} \times \frac{2}{\sqrt{3}}=\frac{4 \sqrt{3}}{\sqrt{3}}=-\frac{\text { Constant term }}{\text { Coefficient of } \mathrm{x}^{2}}$
Hence verified.
Q10. If one zero of polynomial $\left(a^{2}+9\right) x^{2}+13 x+6 a$ is reciprocal of the other, find the value of a.

Sol. Let one zero of the given polynomial be a.

Then, the other zero is $\frac{1}{\alpha}$
$\therefore \quad$ Product of zeros $=\alpha \times \frac{1}{\alpha}=1$

But, as per the given polynomial product of zeros $=\frac{6 a}{a^{2}+9}$
$\therefore \quad=\frac{6 a}{a^{2}+9}=1$
$\Rightarrow \quad a^{2}+9=6 a$
$\Rightarrow \quad a^{2}-6 \mathrm{a}+9=0 \quad \Rightarrow \quad(\mathrm{a}-3)^{2}=0$
$\Rightarrow \quad a-3=0 \quad \Rightarrow \quad a=3$
Hence, $\mathrm{a}=3$.

CHAPTER - 3 : PAIR OF LINEAR EQUATION IN TWO VARIABLES

Q11. Solve for x and y

$$
\frac{b}{a} x+\frac{a}{b} y=a^{2}+b^{2} ; \quad x+y=2 a b
$$

Sol. We have, $\frac{b}{a} x+\frac{a}{b} y=a^{2}+b^{2}$

$$
\begin{equation*}
x+y=2 a b \tag{ii}
\end{equation*}
$$

Multiplying (ii) by b / a, we gete

$$
\begin{equation*}
\frac{b}{a} x+\frac{a}{b} y=2 b^{2} \tag{iii}
\end{equation*}
$$

Subtracting (iii) from (i), we get

$$
\begin{aligned}
\left(\frac{a}{b}-\frac{b}{a}\right) y=a^{2}+b^{2}-2 b^{2} & \Rightarrow\left(\frac{a^{2}-b^{2}}{a b}\right) y=\left(a^{2}+b^{2}\right) \\
\Rightarrow y=\left(a^{2}+b^{2}\right) x \frac{a b}{\left(a^{2}-b^{2}\right)} & \Rightarrow y=a b
\end{aligned}
$$

Putting the value of y in (ii), we get

$$
\begin{aligned}
& x+a b=s a b \\
\Rightarrow \quad & x=a b \\
\therefore & x=a b, y=a b
\end{aligned}
$$

Q12. Five years ago, A was thrice as old as B and ten years later. A shall be twice as old as B. What are the present ages of A and B ?

Sol. Let the present ages of B and A be x years and y years respectively. Then

$$
\text { B's age } 5 \text { years ago }=(x-5) \text { years }
$$

and A's age 5 years ago $=(y-5)$ years

$$
\begin{equation*}
(y-5)=3(x-5) \quad \Rightarrow \quad 3 x-y=10 \tag{i}
\end{equation*}
$$

B's age 10 years hence $=(x+10)$ years
A's age 10 years hence $=(y+10)$ years

$$
\begin{equation*}
y+10=2(x+10) \Rightarrow 2 x-y=-10 \tag{ii}
\end{equation*}
$$

On subtracting (ii) from (i) we get $x=20$
Putting $\mathrm{x}=20$ in (i) we get

$$
(3 \times 20)-y=10 \Rightarrow y=50
$$

$\therefore \quad \mathrm{x}=20$ and $\mathrm{y}=50$
Hence, B's present age $=20$ years and A's present age -50 years.
Q13. A fraction becomes $\frac{1}{3}$ when $\mathbf{1}$ is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction.

Sol. Let the numerator be x and denominator be y .
$\therefore \quad$ Fraction $=\frac{x}{y}$
Now, according to question.

$$
\begin{align*}
& \frac{x-1}{y}=\frac{1}{3} \quad \Rightarrow \quad 3 x-3=y \\
& 3 x-y=3 \tag{i}
\end{align*}
$$

and $\frac{x}{y+8}=\frac{1}{4} \quad \Rightarrow \quad 4 x=y+8$

$$
y x-y=8
$$

Now, subtracting equation (iii) and (i), we have

$$
\begin{array}{r}
3 x-y=3 \\
4 x-y=8 \\
-\quad+\quad- \\
\hline \\
-x=-5 \\
\therefore \quad x=5
\end{array}
$$

Putting the value of x in equation (i), we have
$3 \times 5-y=3$
$15-y=3$
$15-3=y$
$\therefore \quad \mathrm{y}=12$

Hence, the required fraction is $\frac{5}{12}$
Q14. Show graphically the given system of equations
$2 x+4 y=10$ and $3 x+6 y=12$
has no solution.
Sol. We have, $2 \mathrm{x}+4 \mathrm{y}=10$

$$
\Rightarrow \quad 4 y=10-2 x \quad \Rightarrow y=\frac{5-x}{2}
$$

Thus, we have the following table

x	1	3	5
7	2	1	0

Plot the point $\mathrm{A}(1,2) \mathrm{B}(3,1)$ and $\mathrm{C}(5,0)$ on the graph paper. Join A, B and C and extend it on both sides to obtain the graph of the equation $2 x+4 y=10$

We have, $\quad 3 x+6 y=12$

$$
\Rightarrow \quad 6 y=12-3 x \quad \Rightarrow y=\frac{4-x}{2}
$$

Thus, we have the following table

x	2	0	4
y	1	2	0

Plot the point $\mathrm{D}(2,1), \mathrm{E}(0,2)$ and $\mathrm{F}(4,0)$ on the same graph paper. Join D, E and F and extend it on both sides to obtain the graph of the equation $3 x+6 y=12$

We find that the lines represented by equation $2 x+4 y=10$ and $3 x+6 y=12$ are parallel. So, the two lines have no common point. Hence, the given system of equations has no solutions.

Q15. Solve the following pairs of linear equations by the elimination method and the substitution method :
$\frac{x}{2}+\frac{2 y}{3}=-1$ and $x-\frac{y}{3}=3$

Sol. We have, $\frac{x}{2}+\frac{2 y}{3}=-1 \quad \Rightarrow \quad \frac{3 x+4 y}{6}=-1$
$\therefore \quad 3 x+4 y=-6$
and

$$
\begin{equation*}
x-\frac{y}{3}=3 \quad \Rightarrow \quad \frac{3 x-y}{3}=3 \tag{ii}
\end{equation*}
$$

$\therefore \quad 3 \mathrm{x}-\mathrm{y}=9$
By Elimination Method :
Subtracting (ii) from (i), we have
$5 y=-15$ or $y=-\frac{15}{5}=-3$
Putting the value of y in equation (i), we have

$$
\begin{array}{lll}
& 3 x+4 x(-3)=-6 & \Rightarrow \\
\therefore & 3 x=-6+12 & \Rightarrow 3 x-12=-6 \\
\therefore & x=\frac{6}{3}=2 & \\
\therefore &
\end{array}
$$

Hence, solution is $x=2, y=-3$.
Q16. Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in $\mathbf{5}$ hours. If they travel towards each other, they meet in $\mathbf{1}$ hour. What are the speeds of the two cards.

Sol. Let the speed of two cars be $\mathrm{x} \mathrm{km} / \mathrm{h}$ and $\mathrm{y} \mathrm{km} / \mathrm{h}$ respectively.
Case I: When two cars move inthe same direction, they will meet each other at P after 5 hours.

The distance covered by car from $\mathrm{A}=5 \mathrm{x}($ Distance $=$ Speed x Time $)$ and distance covered by the car from $B=5 y$

$$
\begin{align*}
& \therefore \quad 5 x-5 y=A B=100 \quad \Rightarrow \quad x-y=\frac{100}{5} \\
& \therefore \quad x-y=20 \tag{i}
\end{align*}
$$

Case II: When two cards move in opposite directions, they will meet each other at Q after one hour

The distance covered by the car from $\mathrm{A}=\mathrm{x}$
The distance covered by the car from $\mathrm{B}=\mathrm{y}$

$$
\begin{equation*}
\therefore \quad \mathrm{x}+\mathrm{y}=\mathrm{AB}=100 \quad \Rightarrow \quad \mathrm{x}+\mathrm{y}=100 \tag{ii}
\end{equation*}
$$

Now, adding equations (i) and (ii), we have

$$
2 \mathrm{x}=120 \quad \Rightarrow \quad \mathrm{x}=\frac{120}{2}=60
$$

Putting the value of x in equation (i), we get

$$
60-\mathrm{y}=20 \quad \Rightarrow \quad-\mathrm{y}=-40 \quad \therefore \quad \mathrm{y}=40
$$

Hence, the speeds of two cars are $60 \mathrm{~km} / \mathrm{h}$ and $40 \mathrm{~km} / \mathrm{h}$ respectively.
Q17. The sum of a two digit number and the number formed by interchanging its digits is 110 . It 10 is subtracted from the first number, the new number is $\mathbf{4}$ more than 5 times the sum of the digits in the first number. Find the first number.

Sol. Let the digits at unit and tens places be x and y respectively.
Then, number $=10 y+x$
Number formed by the interchanging the digits $=10 \mathrm{x}+\mathrm{y}$
According to the given condition, we have

$$
\begin{aligned}
& (10 y+x)+(10 x+y)=110 \quad \Rightarrow \quad 11 x+11 y=110 \\
\Rightarrow \quad & x+y-10=0
\end{aligned}
$$

Again, according to question, we have

$$
\begin{aligned}
&(10 y+x)-10=5(x+y)+4 \quad \Rightarrow \quad 10 y+x-10=5 x+5 y+4 \\
& \Rightarrow \quad 10 y+x-5 x-5 y=4+10 \\
& 5 y-4 x=14 \text { or } 4 x-5 y+14=0
\end{aligned}
$$

By using cross-multiplication, we have

$$
\begin{aligned}
& \frac{\mathrm{x}}{1 \times 14-(-5) \times(-10)}=\frac{-\mathrm{y}}{1 \times 14-4 \times(-10)}=\frac{1}{1 \times(-5)-1 \times 4} \\
\Rightarrow \quad & \frac{\mathrm{x}}{14-50}=\frac{-\mathrm{y}}{14+40}=\frac{1}{-5-4} \quad \Rightarrow \quad \frac{\mathrm{x}}{-36}=\frac{-\mathrm{y}}{-54}=\frac{1}{-9}
\end{aligned}
$$

$\Rightarrow \quad \mathrm{x}=\frac{-36}{-9}$ and $\mathrm{y}=\frac{-54}{-9}=\frac{1}{-9} \quad \Rightarrow \quad \mathrm{x}=4$ and $\mathrm{y}=6$
Putting the value of x and y in equation (i), we get
Number $10 \times 6+4=64$
Q18. Students of a class are made to stand in rows. If one student is extra in each row, there would be 2 rows less. If one student is less in each row, there would be 3 rows more. Find the number of students in the class.

Sol. Let total number of rows be y
and total number of students in each row be x
$\therefore \quad$ Total number of students $=\mathrm{xy}$
Case I : If one student is extra in each row, there would be two rows less.
Now, number of rows $=(y-2)$
Number of students in each row $=(x+1)$
Total number of students $=$ Number of rows x Number of students in each row

$$
\begin{array}{lll}
& x y=(y-2)(x+1) & \Rightarrow \\
\Rightarrow \quad & x y-x y-y+2 x=-2 & \Rightarrow \tag{i}\\
\hline
\end{array}
$$

Case II : If one student is less in each row, there would be 3 rows more.
Now, number of rows $=(y+3)$
and number of students in each row $=(x-1)$
Total number of students = Number of rows x Number of students in each row

$$
\begin{array}{llll}
\therefore \quad & x y=(y+3)(x-1) & \Rightarrow & x y=x y-y+3 x-3 \\
& x y-x y+y-3 x=-3 \tag{ii}
\end{array} \quad \Rightarrow \quad-3 x+y=-3
$$

On adding equations (i) and (ii), we have

$$
\begin{gathered}
2 x-y=-2 \\
-3 x+y=-3 \\
\hline-x=-5 \\
x=5
\end{gathered}
$$

or
Putting the value of x in equation (i), we get

$$
\begin{array}{rll}
2(5)-\mathrm{y}=-2 & \Rightarrow & 10-\mathrm{y}=-2 \\
-\mathrm{y}=-2-10 & \Rightarrow & -y=-12
\end{array}
$$

or

$$
y=12
$$

$\therefore \quad$ Total number of students in the class $=5 \times 12=60$
Q19. The ages of two friends Ani and Biju differ by 3 years. Ani's father Dharam is twice as old as Ani and Biju is twice as old as his sister Cathy. The ages of Cathy and Dharam differ by $\mathbf{3 0}$ years. Find the ages of Ani and Biju.

Sol. Let the ages of Ani and Biju be x and y years respectively. Then $\mathrm{x}-\mathrm{y}= \pm 3$
Age of Dharam $=2 x$ years

Age of Cathy $=\frac{\mathrm{y}}{2}$ years
Clearly, Dharam is older than Cathy.
$\therefore \quad 2 \mathrm{x}-\frac{\mathrm{y}}{2}=30 \quad \Rightarrow \quad \frac{4 \mathrm{x}-\mathrm{y}}{2}=30 \quad \Rightarrow 4 \mathrm{x}-\mathrm{y}=30$
Thus, we have following two systems of linear equations

$$
\begin{align*}
& x-y=3 \tag{i}\\
& 4 x-4=60 \tag{ii}
\end{align*}
$$

and $x-y=-3$

$$
\begin{equation*}
4 x-y=60 \tag{iii}
\end{equation*}
$$

Subtracting equation (i) from (ii), we get

$$
\begin{aligned}
& 4 x-y=60 \\
& x-y=3 \\
& -+\quad-
\end{aligned} \quad \Rightarrow \quad x=19 \text { } \quad \begin{aligned}
& \\
& \hline 3 x=57
\end{aligned}
$$

Putting $\mathrm{x}=19$ in equation (iii) from (iv)

$$
\begin{gathered}
4 x-y=60 \\
x-y=3 \\
-+\quad+
\end{gathered} \quad \Rightarrow \quad x=21 \begin{aligned}
& \\
& \hline 3 x=63
\end{aligned} \quad \begin{aligned}
& \\
& \hline \begin{array}{l}
4
\end{array} \\
& \hline
\end{aligned}
$$

Putting $x=21$ in equation (iii), we get

$$
21-y=-3 \quad \Rightarrow \quad y=24
$$

Hence, age of Ani $=19$ years and age of $\mathrm{Biju}=16$ years
or age of Ani $=21$ years and age of Biju $=24$ years

CHAPTER - 4 : QUADRATIC EQUATIONS

Q20. If $\mathbf{a d}=\mathrm{bc}$, then prove that the equation
$\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x=\left(c^{2}+d^{2}\right)=0$ has no real roots
Sol. The given quadratic equation is $\left(a^{2}+b^{2}\right) x^{2}+2(a c+b d) x=\left(c^{2}+d^{2}\right)=0$

$$
\begin{aligned}
D & =b^{2}-4 a c \\
& =4(a c+b d)^{2}-4\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \\
& =-4\left(a^{2} d^{2}+b^{2} c^{2}-2 a b c d\right)=-4(a d-b c)^{2}
\end{aligned}
$$

Since $\mathrm{ad} \neq \mathrm{bc}$
There $\mathrm{D}<0$
Hence, the equation has no real roots.
Q21. Solve for $x: \sqrt{3} x^{2}-2 x-8 \sqrt{3}=0$
Sol.

$$
x: \sqrt{3} x^{2}-2 x-8 \sqrt{3}=0
$$

By mid term splitting

$$
\begin{aligned}
& \Rightarrow \quad \sqrt{3} x^{2}-6 x+4 x-8 \sqrt{3}=0 \\
& \Rightarrow \quad \sqrt{3} x(x-2 \sqrt{3})+4(x-2 \sqrt{3})=0 \quad \Rightarrow \quad(x-2 \sqrt{3})(\sqrt{3} x+4)=0 \\
& \Rightarrow \quad \text { Either }(x-2 \sqrt{3})=0 \text { or }(\sqrt{3} x+4)=0 \\
& \Rightarrow \quad \mathrm{x}=\frac{-4}{\sqrt{3}}, 2 \sqrt{3}
\end{aligned}
$$

Q22. Find the roots of the following equation :

$$
\frac{1}{x+3}-\frac{1}{x-6}=\frac{9}{20} ; x \neq-3,6
$$

Sol. Given $\frac{1}{x+3}-\frac{1}{x-6}=\frac{9}{20} ; x \neq-3,6$

$$
\begin{array}{llll}
\Rightarrow & \frac{(x-6)-(x+3)}{(x+3)(x-6)}=\frac{-}{20} & \Rightarrow & \frac{-9}{(x+3)(x-6)}=\frac{9}{20} \\
\Rightarrow & (x+3)(x-6)=-20 & \text { or } & x^{2}-3 x+2=0 \\
\Rightarrow & x^{2}-2 x-x+2=0 & \Rightarrow & x(x-2)-1(x-2)=0 \\
\Rightarrow \quad & (x-1)(x-2)=0 & \Rightarrow & x=1 \text { or } x=2
\end{array}
$$

Both $\mathrm{x}=1$ and $\mathrm{x}=2$ are satisfying the given equation. Hence, $\mathrm{x}=1,1,2$ are the solutions of the equation.

Q23. Solve for $x: \frac{2 x}{x-3}+\frac{1}{2 x+3}+\frac{3 x+9}{(x-3)(2 x=3)}=0, x \neq 3,-\frac{3}{2}$

Sol. $x: \frac{2 x}{x-3}+\frac{1}{2 x+3}+\frac{3 x+9}{(x-3)(2 x=3)}=0, x \neq 3,-\frac{3}{2}$
$\Rightarrow \quad 2 \mathrm{x}(2 \mathrm{x}+3)+(\mathrm{x}-3)+(3 \mathrm{x}+9)=0$
$\Rightarrow \quad 4 x^{2}+10 \mathrm{x}+6=0 \quad \Rightarrow \quad 2 x^{2}+5 \mathrm{x}+3=0$
$\Rightarrow \quad(\mathrm{x}+1)(2 \mathrm{x}+3)=0 \quad \Rightarrow \quad \mathrm{x}=-1, \mathrm{x}=-\frac{3}{2}$

But $x=-\frac{3}{2}$ $\therefore \quad \mathrm{x}=-1$

Q24. Solve for $x: \frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}=\frac{2}{3}, x \neq 1,2,3$

Sol. $\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}=\frac{2}{3} \Rightarrow \frac{(x-3)=(x-1)}{(x-1)(x-2)(x-3)}=\frac{2}{3}$
$\Rightarrow \quad 3(\mathrm{x}-3+\mathrm{x}-1)=2(\mathrm{x}-1)(\mathrm{x}-3) \quad \Rightarrow \quad 3(2 \mathrm{x}-4)=2(\mathrm{x}-1)(\mathrm{x}-2)(\mathrm{x}-3)$
$\Rightarrow \quad 3 x 2(x-2)=2(x-1)(x-3) \quad \Rightarrow \quad 3=(x-1)(x-3)$ i.e., $x^{2}-4 x=0$
$\Rightarrow \quad \mathrm{x}(\mathrm{x}-4)=0 \quad \therefore \quad \mathrm{x}=0, \mathrm{x}=4$
Q25. Find the value fo \mathbf{p} for which the quadratic equation
$(2 p+1) x^{2}-(7 p+2) x+(7 p-3)=0$ has equal roots. Also find these roots.
Sol. Since the quadratic equation has equal roots, $D=0$
i.e., $\quad b^{2}-4 a c=0$

In $\quad(2 p+1) x^{2}-(7 p+2) x+(7 p-3)=0$
Here, $\quad a=(2 p+1), b=-(7 p+2), c=(7 p-3)$

$$
\begin{array}{llll}
\therefore & (7 p+2)^{2}-4(2 p+1), \mathrm{c}=(7 \mathrm{p}-3) \\
\Rightarrow & 49 \mathrm{p}^{2}+4-28 \mathrm{p}-(8 \mathrm{p}+4)(7 \mathrm{p}-3)=0 \\
\Rightarrow & 49 \mathrm{p}^{2}+4+28 \mathrm{p}-56 \mathrm{p}^{2}+28 \mathrm{p}-28 \mathrm{p}+12=0 \\
\Rightarrow & -7 \mathrm{p}^{2}+24 \mathrm{p}+16=0 \quad & \Rightarrow & 7 \mathrm{p}^{2}-24 \mathrm{p}-16=0 \\
\Rightarrow & 7 \mathrm{p}^{2}-28 \mathrm{p}+4 \mathrm{p}-16=0 \quad & \Rightarrow & 7 p(p-4)+4(p-4)=0 \\
\Rightarrow & (7 p+4)(p-4)=0 \quad & \Rightarrow \quad \mathrm{p}=-\frac{4}{7} \text { or } \mathrm{p}=4
\end{array}
$$

Q26. A train travels 360 km at a uniform speed. If the speed has been $5 \mathbf{k m} / \mathrm{h}$ more, it would have taken 1 hour less for the same journey. Find the speed of the train.
Sol. Let the uniform speed of the train be $\mathrm{xkm} / \mathrm{h}$.
Then, time taken to cover $360 \mathrm{~km}=\frac{360}{\mathrm{x}} \mathrm{h}$
Now, new increased speed $=(x=5) \mathrm{km} / \mathrm{h}$
So, time taken to cover $360 \mathrm{~km}=\frac{360}{\mathrm{x}+5} \mathrm{~h}$

According to question, $\frac{360}{x}=\frac{360}{x+5}=1$

$$
\begin{array}{lll}
\Rightarrow \quad 360\left(\frac{1}{x}-\frac{1}{x+5}\right)=1 & \Rightarrow & \frac{360(x+5-x)}{x(x+5)}=1 \\
\Rightarrow \quad \frac{360+5}{x(x+5)}=1 & \Rightarrow & 1800=x^{2}+5 x \\
\therefore \quad x^{2}+5 x-1800=0 & \Rightarrow & x^{2}+45 x-40 x-1800=0 \\
\Rightarrow \quad x(x+45)-40(x+45)=0 & \Rightarrow & (x+45)(x-40)=0
\end{array}
$$

Either $\mathrm{x}+45=0$ or $\mathrm{x}=40=0$
$\therefore \quad x=-45$ or $x=40$
But x cannot be negative, so $x \neq-45$
Therefore, $\mathrm{x}=40$
Hence, the uniform speed of train is $40 \mathrm{~km} / \mathrm{h}$.
Q27. The sum of the areas of two squares is $468 \mathrm{~m}^{2}$. If the difference of their perimeters is $\mathbf{2 4 m}$, find the sides of the two squares.

Sol. Let x be the length of the side of first square and y be the length of side of the second square.

Then, $x^{2}+y^{2}=468$
Let x be the length of the side of the bigger square.

$$
\begin{align*}
& 4 x-4 y=24 \\
\Rightarrow \quad & x-4=6 \quad \text { or } x=y+6 \tag{ii}
\end{align*}
$$

Putting the value of x in terms of y from equation (ii), in equation (i), we get

$$
\begin{array}{rlll}
& (y+6)^{2}+y^{2}=468 & & \\
\Rightarrow \quad & y^{2}+12 y+36+y^{2}=468 & \text { or } & 2 y^{2}+12 y-432=0 \\
\Rightarrow \quad & y^{2}+6 y-216=0 & \Rightarrow \quad y^{2}+18 y-12 y-216=0
\end{array}
$$

$\Rightarrow \quad y(y+18)-12(y+18)=0 \quad \Rightarrow \quad(y+18)(y-12)=0$
Either $y+18=0 \quad$ or $\quad y-12=0$
$\Rightarrow \quad y=-18 \quad$ or $\quad \mathrm{y}=12$
But, sides cannot be negative, so $\mathrm{y}=12$
Therefore, $x=12+6=18$
Hence, sides of two squares are 18 m and 12 m .
Q28. A two digit number is such that the product of its digits is 18 . When 63 is subtracted from the number, the digits interchange their places. Find the number.

Sol. Let the digit at tens place be x .
Then, digit at unit place $=\frac{18}{\mathrm{x}}$
$\therefore \quad$ Number $=10 x+\frac{18}{x}$
and number obtained by interchaning the digits $=10 \times \frac{18}{x}+x$
According to the question,

$$
\begin{array}{lll}
& \left(10 \mathrm{x}+\frac{18}{\mathrm{x}}\right)-63=10 \mathrm{x} \frac{18}{\mathrm{x}}+\mathrm{x} & \Rightarrow \\
\Rightarrow \quad 10 \mathrm{x}+\frac{18}{\mathrm{x}}-\frac{180}{\mathrm{x}}-\mathrm{x}=63 & \Rightarrow & =\left(10 \mathrm{x}+\frac{18}{\mathrm{x}}\right)-\left(10 \mathrm{x} \frac{18}{\mathrm{x}}+\mathrm{x}\right)=63 \\
\Rightarrow \quad 9 \mathrm{x}^{2}-63 \mathrm{x}-162=0 & \Rightarrow & \mathrm{x}^{2}-7 \mathrm{x}-18=0 \\
\Rightarrow \quad \mathrm{x}^{2}-9 \mathrm{x}+2 \mathrm{x}-18=0 & \Rightarrow & \mathrm{x}(\mathrm{x}-9)+2(\mathrm{x}-9)=0 \\
\Rightarrow \quad(\mathrm{x}-9)(\mathrm{x}+2)=0 & \Rightarrow \quad \mathrm{x}=9 \text { or } \mathrm{x}=-2 \\
\Rightarrow \quad \mathrm{x}=9 & {[\therefore \text { a digit can never be negative }]}
\end{array}
$$

Hence, the required number $=10 \times 9+\frac{18}{9}=92$
Q29. If twice the area of a smaller square is subtracted from the area of a larger square; the result is $14 \mathrm{~cm}^{2}$. However, if twice the area of the larger square is added to three times the area of the smaller square, the result is $203 \mathrm{~cm}^{2}$. Determine the sides of the two squares.
Sol. Let the sides of the larger and smaller squares be x and y respectively. Then

$$
\begin{array}{ll}
& x^{2}-2 y^{2}=14 \\
\text { and } \quad & 2 x^{2}+3 y^{2}=203 \tag{ii}
\end{array}
$$

Operating (ii) -2 x (i), we get

$$
\begin{array}{ll}
& 2 x^{2}+3 y^{2}-\left(2 x^{2}-4 y^{2}\right)=203-2 x 14 \\
\Rightarrow \quad & 2 x^{2}+3 y^{2}-2 x^{2}-4 y^{2}=203-28 \\
\Rightarrow & 7 y^{2}=172 \quad \Rightarrow \quad y^{2}=25 \quad \Rightarrow \quad y= \pm 5 \\
\Rightarrow & y=5 \quad[\therefore \text { Side cannot be negative }]
\end{array}
$$

By putting the value of y in equation (i), we get

$$
\begin{array}{ll}
& x^{2}-2 x 5=14 \quad \Rightarrow \quad x^{2}-50=14 \text { or } x^{2}=64 \\
\therefore \quad & x= \pm 8 \text { or } x=8
\end{array}
$$

$\therefore \quad$ Sides of the two squares are 8 cm and 5 cm .
Q30. One-fourth of a herd of camels was seen in the forest. Twice the square root of the herd had gone to mountains and the remaining 15 camels were seen on the bank of a river. Find the total number of camels.

Sol. Let x be the total number of camels.

Then, number of camels in the forest $=\frac{X}{4}$

Number of camels on mountains $=2 \sqrt{x}$
and number of camels on the bank of river $=15$
Now, by hypothesis, we have

$$
\frac{x}{4}+2 \sqrt{x}+15=x \quad \Rightarrow 3 x-8 \sqrt{x}-60=0
$$

Let $\sqrt{\mathrm{x}}=\mathrm{y}$, then $\mathrm{x}=\mathrm{y}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad 3 y^{2}-8 y-60=0 \\
& \Rightarrow \quad 3 y(y-6)+10(y-6)=0 \quad \Rightarrow \quad 3 y^{2}-18 y+10 y-60=0 \\
& \Rightarrow \quad y=6 \quad \text { or } \quad y=-\frac{10}{3}
\end{aligned}
$$

Now, $\mathrm{y}=-\frac{10}{3}$

$$
\Rightarrow \quad \mathrm{x}=\left(-\frac{10}{3}\right)^{2}=\frac{100}{9} \quad\left(\because \mathrm{x}=\mathrm{y}^{2}\right)
$$

But the number of camels cannot be a fraction.

$$
\therefore \quad y=6 \quad \Rightarrow \quad x=6^{2}=36
$$

Hence, the number of camels $=36$

Q31. Solve the following equation :

$9 x^{2}-9(a+b) x+\left[2 a^{2}+5 a b+2 b^{2}\right]=0$
Sol. Consider the equation $9 x^{2}-9(a+b) x+\left[2 a^{2}+5 a b+2 b^{2}\right]=0$
Now comparing with $A x^{2}+B x+C=0$, we get

$$
\mathrm{A}=9, \mathrm{~B}=-9(\mathrm{a}+\mathrm{b}) \text { and } \mathrm{C}=\left[2 \mathrm{a}^{2}+5 \mathrm{ab}+2 \mathrm{~b}^{2}\right]
$$

Now discriminant,

$$
\begin{aligned}
& D=B^{2}=4 A C \\
& =\{-9(a+b)\}^{2}-4 \times 9\left\{2 a^{2}+5 a b+2 b^{2}\right)=9^{2}(a+b)^{2}-4 \times 9\left(2 a^{2}+5 a b+2 b^{2}\right) \\
& =9\left\{9(a+b)^{2}-4\left(2 a^{2}+5 a b+2 b^{2}\right)\right\}=9\left\{9 a^{2}+9 b^{2}+18 a b-8 a^{2}-20 a b-8 b^{2}\right. \\
& =9\left\{a^{2}+b^{2}-2 a b\right\}=9(a-b)^{2}
\end{aligned}
$$

Now using the quadratic formula.

$$
\begin{aligned}
& x=\frac{-B \pm \sqrt{D}}{2 A}, \text { we get } x=\frac{9(a+b) \pm \sqrt{9(a-b)^{2}}}{2 x 9} \\
\Rightarrow & x=\frac{9(a+b) \pm 3(a-b)}{2 x 9} \quad \Rightarrow \quad x=\frac{3(a+b) \pm 3(a-b)}{6} \\
\Rightarrow & x=\frac{(3 a+3 b)+(a-b)}{6} \quad \text { and } \quad x=\frac{(3 a+3 b)-(a-b)}{6} \\
\Rightarrow & x=\frac{(4 a+2 b)}{6} \\
\Rightarrow & \quad \text { and } \quad x=\frac{(2 a+4 b)}{6} \\
\Rightarrow & \quad \text { and } \quad x=\frac{2 a+2 b}{3} \quad \text { are required solutions. }
\end{aligned}
$$

Q32. Two taps running together can fill a tank in $3 \frac{1}{13}$ hours. If one tap takes $\mathbf{3}$ hours more than the other to fill the tank, then how much time will each tap take to fill the tank ?

Sol. Let, time taken by faster tap to fill the tank be x hours
Therefore, time taken by slower tap to fill the tank $=(x+3)$ hours

Since the faster tap takes x hours to fill the tank.
$\therefore \quad$ Portion of the tank filled by the faster tap in one hour $=\frac{1}{x}$

Portion of the tank filled by the slower tap in one hour $=\frac{1}{x+3}$

Portion of the tank filled by the two tap together in one hour $=\frac{1}{40}=\frac{13}{40}$
According to question
13

$$
\begin{array}{lll}
\Rightarrow & \frac{1}{x}+\frac{1}{x+3}=\frac{13}{40} & \Rightarrow \\
\Rightarrow \quad 40(2 x+3)=13 x(x+3) & \Rightarrow & 80 x+120=13 x^{2}+39 x \\
\Rightarrow \quad 13 x^{2}-41 x-120=0 & \Rightarrow & 13 x^{2}-65 x+24 x-120=0 \\
\Rightarrow \quad 13 x(x-5)+24(x-5)=0 & \Rightarrow & (x-5)(13 x+24)=0
\end{array}
$$

Either $\mathrm{x}-5=0$ or $13 \mathrm{x}+24=0$

$$
\begin{array}{lll}
\Rightarrow & \mathrm{x}-5=0 & \text { or } \quad \mathrm{x}=\frac{-24}{13} \\
\Rightarrow \quad \mathrm{x}=5 & {[\because \mathrm{x} \text { cannot be negative }]}
\end{array}
$$

Hence, time taken by faster tap to fill the tank $=x=5$ hours.
and time taken by slower up tap $=x+3=5+3=8$ hours

CHAPTER - 5 : COORDINATE GEOMETRY

Q33. Determine, if the points $(1,5),(2,3)$ and $(-2,-11)$ and collinear.
Sol. Let A $(1,5)$, B $(2,3)$ and $C(-2,-11)$ be the given points. Then we have

$$
\begin{aligned}
& A B=\sqrt{(2-1)^{2}+(3-5)^{2}}=\sqrt{1+4}=\sqrt{5} \\
& B C=\sqrt{(-2-2)^{2}+(-11-3)^{2}}=\sqrt{16+196}=\sqrt{4 \times 53}=2 \sqrt{53} \\
& A C=\sqrt{(-2-1)^{2}+(-11-5)^{2}}=\sqrt{9+256}=\sqrt{265}
\end{aligned}
$$

Clearly,

$$
\mathrm{Ab}+\mathrm{BC} \neq \mathrm{AC}
$$

$\therefore \quad \mathrm{A}, \mathrm{B}, \mathrm{C}$ are not collinear
Q34. Find the value of y for which the distance between the points $P(2,-3)$ and $Q(10, y)$ is $\mathbf{1 0}$ units.
OR

A line segment is of length 10 units. If the coordinates of its one end are $(2,-3)$ and the abscissa of the other end is 10 , find its ordinate.

Sol. We have, $\quad \mathrm{PQ}=10$
$\Rightarrow \quad \sqrt{(10-2)^{2}+(y+3)^{2}}=10$
Squaring both sides, we have
$\Rightarrow \quad(8)^{2}+(y+3)^{2}=100 \quad \Rightarrow \quad(y+3)^{2}=100-64$
$\Rightarrow \quad(y+3)^{2}=36 \quad$ or $\quad y+3= \pm 6$
$\Rightarrow \quad y+3=6, y+3=-6 \quad$ or $\quad y=3, y=-9$
Hence, value of y are -9 and 3 .
Q35. Find the area of a rhombus if its vertices $(3,0),(4,5),(-1,4)$ and $(-2,-1)$ are taken in order.
Sol. Let $\mathrm{A}(3,0), \mathrm{B}(4,5), \mathrm{C}(-1,4)$ and $\mathrm{D}(-2,-1)$ be the vertices of a rhombus.
Therefore, its diagonals

$$
A C=\sqrt{(-1-3)^{2}+(4-0)^{2}}=\sqrt{16+16}=\sqrt{32}=4 \sqrt{2}
$$

and

$$
B D=\sqrt{(-2-4)^{2}+(-1-5)^{2}}=\sqrt{36+36}=\sqrt{72}=6 \sqrt{2}
$$

$\therefore \quad$ Area of rhombus $\mathrm{ABCD}=\frac{1}{2} \mathrm{x}$ (Product of length of diagonals)

$$
=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BD}=\frac{1}{2} \times 4 \sqrt{2} \times 6 \sqrt{2}=24 \text { sq units }
$$

Q36. Find the area of the triangle whose vertices are : $(-5,-1),(3,-5),(5,2)$
Sol. Let $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(-5,-1), \mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(3,-5), \mathrm{C}\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=(5,2)$

$$
\begin{aligned}
\therefore \quad \text { area of } \Delta A B C & =\frac{1}{2}\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right] \\
& =\frac{1}{2}[-5(-5-2)+3(2+1)+5(-1+5)] \\
& =\frac{1}{2}[35+9+20)=\frac{1}{2} x 64=32 \text { sq units }
\end{aligned}
$$

Q37. If the point $P(k-1,2)$ is equidistant from the points $A(3, k)$ and $B(k, 5)$, find the values of k.
Sol. Let the given line segment be divided by point Q . Since P is equidistant from A and B ,

$$
\begin{array}{rlrl}
\mathrm{AP} & =\mathrm{BP} \text { or AP2 }=\mathrm{BP} 2 & & \\
{[3-(\mathrm{k}-1)]^{2}+(\mathrm{k}-2)^{2}} & =[\mathrm{k}-(\mathrm{k}-1)]^{2}+(5-2)^{2} & \\
(3-\mathrm{k}+1)^{2}+(\mathrm{k}-2)^{2} & =(\mathrm{k}-\mathrm{k}+1)^{2}+(3)^{2} & & \\
(4-\mathrm{k})^{2}+(\mathrm{k}-2)^{2} & =(1)^{2}+(3) 2 & & \Rightarrow 16+\mathrm{k}^{2}-8 \mathrm{k}+\mathrm{k}^{2}+4-4 \mathrm{k}=1+9 \\
2 \mathrm{k}^{2}-12 \mathrm{k}+20 & =10 & & \Rightarrow \mathrm{k}^{2}-6 \mathrm{k}+10=5
\end{array}
$$

$$
\begin{aligned}
\mathrm{k}^{2}-6 \mathrm{k}+5=0 & \Rightarrow \mathrm{k}^{2}-5 \mathrm{k}-\mathrm{k}+5=0 \\
\mathrm{k}(\mathrm{k}-5)-1(\mathrm{k}-5)=0 & \Rightarrow \mathrm{k}=1 \text { or } \mathrm{k}=5
\end{aligned}
$$

Q38. Find the value of k if the points $A(k+1,2 k), B(3 k, 2 k+3)$ and $C(5 k-1,5 k)$ are collinear.

Sol. Points $\mathrm{A}(\mathrm{k}+1,2 \mathrm{k}), \mathrm{B}(3 \mathrm{k}, 2 \mathrm{k}+3)$ and $\mathrm{C}(5 \mathrm{k}-1,5 \mathrm{k})$ are collinear

$$
\begin{aligned}
& \therefore \quad \text { Area of } \Delta A B C=0 \\
& \Rightarrow \quad \frac{1}{2}\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]=0 \\
& \left.\Rightarrow \quad \frac{1}{2}[\mathrm{k}+1)(2 \mathrm{k}=3-5 \mathrm{k})+3 \mathrm{k}(5 \mathrm{k}-2 \mathrm{k})+(5 \mathrm{k}-1)\{2 \mathrm{k}-(2 \mathrm{k}+3)\}\right]=0 \\
& \left.\Rightarrow \quad \frac{1}{2}[\mathrm{k}+1)(-3 \mathrm{k}+3)+3 \mathrm{k}(3 \mathrm{k})+(5 \mathrm{k}-1)(2 \mathrm{k}-2 \mathrm{k}-3)\right]=0 \\
& \Rightarrow \quad \frac{1}{2}\left[-3 \mathrm{k}^{2}+3 \mathrm{k}-3+9 \mathrm{k}^{2}-15 \mathrm{k}+3\right]=0 \quad \Rightarrow \\
& \Rightarrow \quad \frac{1}{2}\left[6 \mathrm{k}^{2}-15 \mathrm{k}+6\right]=0 \quad 6 \mathrm{k}^{2}-15 \mathrm{k}+6=0 \\
& \Rightarrow \quad 2 \mathrm{k}^{2}-5 \mathrm{k}+2=0 \quad \Rightarrow \quad 2 \mathrm{k}^{2}-4 \mathrm{k}-\mathrm{k}+2=0 \\
& \Rightarrow \quad(\mathrm{k}-2)(2 \mathrm{k}-1)=0
\end{aligned}
$$

If $\mathrm{k}-2=0$, then $\mathrm{k}=2$

If $2 k-1=0$, then $k=\frac{1}{2}$
$\therefore \quad \mathrm{k}=2, \frac{1}{2}$
Q39. Determine the ratio in which the lines $2 x+y-4=0$ divides the line segment joining the points $A(2,-2)$ and $B(3,7)$.

Sol. Let $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ be common points of both lines and divide the line segment joining $\mathrm{A}(2,-2)$ and $\mathrm{B}(3,7)$ in ration $\mathrm{k}: 1$.

$$
\therefore \quad \mathrm{x}_{1}=\frac{3 \mathrm{k}+2}{\mathrm{k}+1} \text { and } \mathrm{y}_{1}=\frac{7 \mathrm{k}+1(-2)}{\mathrm{k}+1}=\frac{7 \mathrm{k}-2}{\mathrm{k}+1}
$$

Since, point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ lies on the line $2 \mathrm{x}+\mathrm{y}=4$
$\therefore \quad 2\left(\frac{3 \mathrm{k}+2}{\mathrm{k}+1}\right)\left(\frac{7 \mathrm{k}-2}{\mathrm{k}+1}\right)=4 \quad \Rightarrow \quad \frac{6 \mathrm{k}+4+7 \mathrm{k}-2}{\mathrm{k}+1}=4$
or $\quad 13 \mathrm{k}+2=4 \mathrm{k}+4$ or $9 \mathrm{k}=2$ or $\mathrm{k}=\frac{2}{9}$

So, required ratio is $\frac{2}{9}: 1$ or $2: 9$

CHAPTER - 6 : TRIANGLES

Q40. E is a point on the side AD produced of a parallelogram $A B C D$ and $B E$ intersects
CD at \mathbf{F}. Show that $\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$
Sol. In $\triangle \mathrm{ABE}$ and $\triangle \mathrm{CFB}$, we have
$\angle \mathrm{AEB}=\angle \mathrm{CBF} \quad$ (Alternate angles)
$\angle \mathrm{A}=\angle \mathrm{C} \quad$ (Opposite angles of a parallelogram)
$\therefore \quad \triangle \mathrm{ABE} \sim \triangle \mathrm{CFB} \quad$ (By AA criterion of similarity)

Q41. In ABC and AMP are two right triangles right-angled at B and M respectively. Prove that :
(i) $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$
(ii) $\frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}}$

Sol. (i) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{AMP}$, we have

$$
\left.\angle \mathrm{ABC}=\angle \mathrm{AMP}=90^{\circ} \quad \text { (Given }\right)
$$

And, $\angle \mathrm{BAC}=\angle \mathrm{MAP} \quad$ (Common angle)
$\therefore \quad \triangle \mathrm{ABC} \sim \triangle \mathrm{AMP} \quad$ (By AA criterion of similarity)
(ii) As $\triangle \mathrm{ABC} \sim \triangle \mathrm{AMP}$ (Proved above)
$\therefore \quad \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}} \quad$ (Sides of similar triangles are proportional)
Q42. In the given $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are on the same base $\mathbf{B C}$. If $\mathbf{A D}$ intersects $\mathbf{B C}$ at \mathbf{O}.
Prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$

Sol. Given: $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ are on the same base BC and AD intersects BC at O .

To Prove : $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$
Construction: Draw $\mathrm{AL} \perp \mathrm{BC}$ and $\mathrm{DM} \perp \mathrm{BC}$
Proof : In $\triangle \mathrm{ALO}$ and $\triangle \mathrm{DMO}$, we have

$$
\begin{array}{ll}
& \angle \mathrm{ALO}=\mathrm{DMO}=90^{\circ} \text { and } \\
& \angle \mathrm{AOL}=\angle \mathrm{DOM} \\
\therefore \quad & \Delta \mathrm{ALO} \sim \triangle \mathrm{DMO} \\
\Rightarrow \quad & \frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{AO}}{\mathrm{DO}} \quad \text { (Vertically opposite angles) } \tag{i}\\
\therefore \quad & \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\frac{1}{2} \mathrm{BC} \times \mathrm{AL}}{\frac{1}{2} \mathrm{BC} \times \mathrm{DM}}=\frac{\mathrm{AL}}{\mathrm{DM}}=\frac{\mathrm{AO}}{\mathrm{DO}}(\text { (imilarity) }
\end{array}
$$

Hence, $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{\mathrm{AO}}{\mathrm{DO}}$
Q43. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$ respectively, where $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$, prove that $\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}$.

Sol. In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQM}$ we have

$$
\begin{array}{rlr}
\angle \mathrm{B} & =\angle \mathrm{Q} & (\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}) \\
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}} & (\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}) \\
\Rightarrow \quad & \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\frac{1}{2} \mathrm{BC}}{\frac{1}{2} \mathrm{QR}} & \Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}} \tag{ii}
\end{array}
$$

[Since Ad and PM are the medians of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ respectively]

From (i) and (ii), it is proved that

$$
\begin{array}{ll}
\Delta \mathrm{ABD} \sim \triangle \mathrm{PQM} & \text { (By SAS criterion of similarity) } \\
\Rightarrow \quad=\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BD}}{\mathrm{QM}}=\frac{\mathrm{AD}}{\mathrm{PM}} \quad \Rightarrow \quad \frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{AD}}{\mathrm{PM}}
\end{array}
$$

Q44. Prove that the area of an equilaterial triangle described on a side of a right-angled isosceles triangle is half the area of the equilateral triangle described on its hypotenuse.

Sol. Given: $\triangle \mathrm{ABC}$ in which $\angle \mathrm{ABC}=90^{\circ}$ and $\mathrm{AB}=\mathrm{BC} . \triangle \mathrm{ABD}$ and \triangle CAE are equilaterial triangles.

To Prove : $\operatorname{ar}(\triangle \mathrm{ABD})=\frac{1}{2} \mathrm{x} \operatorname{ar}(\Delta \mathrm{CAE})$
Proof : Let $\mathrm{AB}=\mathrm{BC}=\mathrm{x}$ units
$\therefore \quad$ hyp. $\mathrm{CA}=\sqrt{\mathrm{x}^{2}+\mathrm{x}^{2}}=\mathrm{x} \sqrt{2}$ units

Each of the $\Delta \mathrm{ABD}$ and $\Delta \mathrm{CAE}$ being equilaterial, has each angle equal to 60°
$\therefore \quad \triangle \mathrm{ABD} \sim \triangle \mathrm{CAE}$
But, the ratio of the area of two similar triangles is equal to the ratio of the squares of their corresponding sides.
$\therefore \quad \frac{\operatorname{ar}(\triangle A B D)}{\operatorname{ar}(\triangle C A E)}=\frac{\mathrm{AB}^{2}}{\mathrm{CA}^{2}}=\frac{\mathrm{x}^{2}}{\left(\mathrm{x} \sqrt{2}^{2}\right.}{ }^{2}=\frac{\mathrm{x}^{2}}{2 \mathrm{x}^{2}}=\frac{1}{2}$

Hence, $\operatorname{ar}(\triangle A B D)=\frac{1}{2} \mathrm{x} \operatorname{ar}(\triangle C A E)$
Q45. If the area of two similar triangles are equal, prove that they are congruent.
Sol. Given : Two triangles ABC and DEF, such that

$$
\Delta \mathrm{ABC} \sim \Delta \mathrm{DEF} \text { and area }(\triangle \mathrm{ABC})=\operatorname{area}(\Delta \mathrm{DEF})
$$

To prove: $\quad \triangle A B C \cong \triangle D E F$
Proof: $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$
$\Rightarrow \quad \angle \mathrm{A}=\angle \mathrm{D}, \angle \mathrm{B}=\angle \mathrm{E}, \angle \mathrm{C}=\angle \mathrm{F}$
and $\quad \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}$

Now, $\operatorname{ar}(\Delta \mathrm{ABC})=\operatorname{ar}(\Delta \mathrm{DEF})$
(Given)

$\therefore \quad \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)}=1$
and $\quad \frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}=\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D E F)} \quad(\because \Delta \mathrm{ABC} \sim \triangle \mathrm{DEF})--$ (ii)

From (i) and (ii), we have

$$
\frac{A B^{2}}{D E^{2}}=\frac{B C^{2}}{E F^{2}}=\frac{A C^{2}}{D F^{2}}=1 \quad \Rightarrow \quad \frac{A B}{D E}=\frac{B C}{E F}=\frac{A C}{D F}=1
$$

Hence, $\triangle A B C \cong \triangle D E F$ (By SSS criterion of congruency)
Q46. Prove that the ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding medians.

Sol. Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ be two similar triangles. AD and PM are the medians of $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$ respectively.

To prove : $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}}$
Proof: Since $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A B^{2}}{P Q^{2}}
$$

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{PQM}$

$$
\frac{A B}{P Q}=\frac{B D}{Q M} \quad\left(\because \frac{A B}{P Q}=\frac{B C}{Q R}=\frac{\frac{1}{2} B C}{\frac{1}{2} Q R}\right)
$$

and $\quad \angle \mathrm{B}=\angle \mathrm{Q}$
$(\because \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR})$
Hence, $\triangle \mathrm{ABD} \sim \Delta \mathrm{PQM}$
(By SAS similarity criterion)

$$
\begin{equation*}
\frac{A B}{P Q}=\frac{A D}{P M} \tag{ii}
\end{equation*}
$$

From (i) and (ii), we have

$$
\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{A D^{2}}{P M^{2}}
$$

Q47. The perpendicular from A on side $B C$ of a $\triangle A B C$ intersects $B C$ at D such that $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}$.

Sol. We have, $\mathrm{DB}=3 \mathrm{CD}$

$$
\begin{array}{ll}
\Rightarrow & \mathrm{BC}=\mathrm{BD}+\mathrm{CD} \\
\therefore & C D=\frac{1}{4} B C
\end{array}
$$

and $\quad D B=3 C D=\frac{3}{4} B C$

Now, in right-angled triangle ABD using Pythagoras Theorem we have

$$
\begin{equation*}
\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{DB}^{2} \tag{i}
\end{equation*}
$$

Again, in right-angled triangle $\triangle \mathrm{ADC}$, we have

$$
\begin{equation*}
\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{CD}^{2} \tag{ii}
\end{equation*}
$$

Subtracting (ii) from (i), we have

$$
\begin{aligned}
& \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{DB}^{2}-\mathrm{CD}^{2} \\
\Rightarrow \quad & A B^{2}-A C^{2}=\left(\frac{3}{4} B C\right)^{2}-\left(\frac{1}{4} B C\right)^{2}=\left(\frac{9}{16}-\frac{1}{16}\right) B C^{2}=\frac{8}{16} B C^{2} \\
\Rightarrow \quad & A B^{2}-A C^{2}=\frac{1}{2} B C^{2} \\
\therefore \quad & 2 \mathrm{AB}^{2}-2 \mathrm{AC}^{2}=\mathrm{BC}^{2} \quad \Rightarrow \quad 2 \mathrm{AB}^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2}
\end{aligned}
$$

Q49. Provide that, in a right triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.

Using the above, do the following :
Prove that, in a $\triangle A B C$ if $A D$ is perpendicular to $B C$, then $A B^{2}+C D^{2}=A C^{2}+B D^{2}$
Sol. Given: A right triangle ABC right-angled at B .

To prove : $\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$
Construction : Draw $B D \perp A C$
Proof : In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ABC}$

$\angle \mathrm{A}$	$=\angle \mathrm{A}$		(Common)
	$\angle \mathrm{ADB}$	$=\angle \mathrm{ABC}$	
$\left(\right.$ Both $\left.90^{\circ}\right)$			
$\therefore \Delta \Delta \mathrm{ADB}$	$\sim \triangle \mathrm{ABC}$		(AA similarity criterion)

So, $\frac{A D}{A B}=\frac{A B}{A C}$
(Sides are proportional)
or $\quad \mathrm{AD} \mathrm{AC}=\mathrm{AB}^{2}$
In $\triangle \mathrm{BDG}$ and $\triangle \mathrm{ABC}$

$$
\begin{aligned}
\angle \mathrm{C} & =\angle \mathrm{C} & & (\text { Common }) \\
\angle \mathrm{BDC} & =\angle \mathrm{ABC} & & \left(\text { Each } 90^{\circ}\right) \\
\Delta \mathrm{BDC} & \sim \Delta \mathrm{ABC} & & (\text { AA similarity })
\end{aligned}
$$

So, $\quad \frac{C D}{B C}=\frac{B C}{A C} \quad$ or; $\quad C D . ~ A C=\mathrm{BC}^{2}$
Adding (i) and (ii), we get

$$
\begin{array}{ll}
& \mathrm{AD} \cdot \mathrm{AC}+\mathrm{CD} \cdot \mathrm{AC}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\text { or, } & \mathrm{AC}(\mathrm{AD}+\mathrm{CD})=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\text { or, } & \mathrm{AC} \cdot \mathrm{AC}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \\
\text { or, } & \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2} \quad \text { (From figure) }
\end{array}
$$

Second Part :
In Fig, As $A D \perp B C$
Therefore, $\angle \mathrm{ADB}=\angle \mathrm{ADC}=90^{\circ}$
By Pythagoras Theorem, we have

$$
\begin{align*}
& \mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2} \tag{i}\\
& \mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{DC}^{2} \tag{ii}
\end{align*}
$$

Subtracting (ii) from (i)

$$
\begin{aligned}
& \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}-\left(\mathrm{AD}^{2}+\mathrm{DC}^{2}\right) \\
& \mathrm{AB}^{2}-\mathrm{AC}^{2}=\mathrm{BD}^{2}-\mathrm{DC}^{2} \\
\Rightarrow \quad & \mathrm{AB}^{2}+\mathrm{DC}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2}
\end{aligned}
$$

Q50. In an equilateral triangle ABC , \mathbf{D} is a point on side BC such that $B D=\frac{1}{3} B C$. Prove that $9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$.

Sol. Given : An equilateral triangle ABC and D be a point on BC such that $B D=\frac{1}{3} B C$.
To prove: $9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}$

Construction : Draw $\mathrm{AE} \perp \mathrm{BC}$. Join AD.

Proof: $\triangle \mathrm{ABC}$ is an equilateral triangle and $\mathrm{AE} \perp \mathrm{BC}$

$$
\mathrm{BE}=\mathrm{EC}
$$

Thus, we have

$$
\mathrm{BD}=\frac{1}{3} \mathrm{BC} \text { and } \mathrm{DC}=\frac{2}{3} \mathrm{BC} \text { and } \mathrm{BE}=\mathrm{EC}=\frac{1}{2} \mathrm{BC}
$$

In $\triangle \mathrm{AEB}$

$$
\begin{aligned}
& A E^{2}+B E^{2}-A B^{2} \quad \text { [Using Pythagoras Theorem) } \\
& A E^{2}=A B^{2}-B E^{2} \\
& \mathrm{AD}^{2}-\mathrm{DE}^{2}=\mathrm{AB}^{2}-\mathrm{BE}^{2} \quad\left[\because \text { In } \triangle \mathrm{AED}, \mathrm{AD}^{2}=\mathrm{AE}^{2}+\mathrm{DE}^{2}\right] \\
& \mathrm{AD}^{2}=\mathrm{AB}^{2}-\mathrm{BE}^{2}+\mathrm{DE}^{2} \\
& A D^{2}=A B^{2}-\left(\frac{1}{2} B C\right)^{2}+\left(B E^{2}-B D\right)^{2} \\
& A D^{2}=A B^{2}-\left(\frac{1}{2} B C\right)^{2}+\left(\frac{1}{2} B C-\frac{1}{3} B C\right)^{2} \\
& A D^{2}=A B^{2}-\frac{1}{2} B C^{2}+\left(\frac{B C}{6}\right)^{2} \quad \Rightarrow \quad A D^{2}=A B^{2}-B C^{2}\left(\frac{1}{4}-\frac{1}{36}\right) \\
& A D^{2}=A B^{2}-B C^{2}\left(\frac{8}{36}\right) \quad[\because \mathrm{AB}=\mathrm{BC}] \\
& 9 \mathrm{AD}^{2}=9 \mathrm{AB}^{2}-2 \mathrm{AB}^{2} \quad 9 \mathrm{AD}^{2}=9 \mathrm{AB}^{2}-2 \mathrm{BC}^{2} \\
& 9 \mathrm{AD}^{2}=7 \mathrm{AB}^{2}
\end{aligned}
$$

Q51. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn intersecting AC at L and AD produced to E. Prove that $E L=2 B L$

Sol. In $\triangle B M C$ and $\triangle E M D$, we have

	MC	$=\mathrm{MD}$	$[\because \mathrm{M}$ is the mid-point of CD$]$
$\angle \mathrm{CMB}$	$=\angle \mathrm{DME}$		$[$ Vertically opposite angles]
and	$\angle \mathrm{MBC}$	$=\angle \mathrm{MED}$	[Alternate angles]

So, by AAS criterion of congruence, we have

$$
\Delta B M C \cong \triangle E M D
$$

$\Rightarrow \quad \mathrm{BC}=\mathrm{DE}$
[CPCT]

Also, $\mathrm{BC}=\mathrm{AD}$
[$\because \mathrm{ABCD}$ is a parallelogram]
Now, in \triangle AEL and Δ CBL, we have

$$
\begin{array}{ll}
\angle \mathrm{ALE}=\angle \mathrm{CLB} & \text { [Vertically opposite angles] } \\
\angle \mathrm{EAL}=\angle \mathrm{BCL} & \text { [Alternate angles] }
\end{array}
$$

So, by AA criterion of similarity of triangles, we have

$$
\begin{aligned}
& \Delta \mathrm{AEL} \sim \Delta \mathrm{CBL} \\
\Rightarrow & \frac{E L}{B L}=\frac{A E}{C B} \\
\Rightarrow \quad & \frac{E L}{B L}=\frac{2 B C}{B C} \quad[\because \mathrm{Ae}=\mathrm{AD}+\mathrm{DE}=\mathrm{BC}+\mathrm{BC}=2 \mathrm{BC}] \\
\Rightarrow \quad & \frac{E L}{B L}=2 \\
\Rightarrow \quad & E L=2 \mathrm{BL}
\end{aligned}
$$

CHAPTER - 7 : CIRCLES

Q52. From an external point P, tangents $P A$ and $P B$ are drawn to a circle with centre O. If $\angle \mathbf{P A B}=50^{\circ}$, then find $\angle \mathrm{AOB}$.

Sol. $\because \quad \mathrm{PA}=\mathrm{PB} \Rightarrow \angle \mathrm{BAP}=\angle \mathrm{ABP}=50^{\circ}$
$\because \quad \angle \mathrm{ABP}=180^{\circ}-50^{\circ}-50^{\circ}=80^{\circ}$
$\because \quad \angle \mathrm{AQB}=180^{\circ}-80^{\circ}=100^{\circ}$

Q53. In fig. $P Q$ is a tangent at a point C to a circle with centre O. If $A B$ is a diameter and $\angle \mathbf{C A B}=30^{\circ}$, find $\angle \mathbf{P C A}$.

Sol. $\angle \mathrm{ACB}=90^{\circ}$ (Angle in the semicircle)
$\angle \mathrm{CAB}=30^{\circ}$ (given)
In $\triangle \mathrm{ABC}$,

$$
\begin{array}{ll}
& 90^{\circ}+30^{\circ} \\
\Rightarrow & \angle \mathrm{ABC}=60^{\circ} \\
\text { Now, } & \angle \mathrm{PCA}=\angle \mathrm{ABC} \text { (Angles in the alternate segment) } \\
\therefore & \angle \mathrm{PCA}=60^{\circ}
\end{array}
$$

OR
Construction : Join O to C.

$\angle \mathrm{PCO}=90^{\circ} \quad[\because$ Line joining centre to point of contact is perpendicular to PQ$]$
In $\quad \triangle \mathrm{AOC}, \mathrm{OA}=\mathrm{OG} \quad$ [Radii of circle]
$\therefore \quad \angle \mathrm{OAC}=\angle \mathrm{OCA}=30^{\circ} \quad$ [Equal sides have equal opp. angles]
Now, $\angle \mathrm{PCA}=\angle \mathrm{PCO}-\angle \mathrm{ACO}$
$=90^{\circ}-30^{\circ}=60^{\circ}$
Q54. A quadrilaterial ABCD is drawn to circumscribe a circle (Fig.) Prove that $A B+C D=A D+B C$.

OR

A circle touches all the four sides of a quadrilateral ABCD. Prove that
$\mathrm{AB}+\mathbf{C D}=\mathbf{B C}+\mathbf{D A}$
Sol. Since lenghts of two tangents drawn from an external point of circle are equal.
Therefore, $\mathrm{AP}=\mathrm{AS}, \mathrm{BP}=\mathrm{BQ}$ and $\mathrm{DR}=\mathrm{DS}$
$\mathrm{CR}=\mathrm{CQ}$ [Where $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are the points of contact]
Adding all these, we have

$$
\begin{aligned}
& (\mathrm{AP}+\mathrm{BP})+(\mathrm{CR}+\mathrm{RD})=(\mathrm{BQ}+\mathrm{CQ})+(\mathrm{DS}+\mathrm{AS}) \\
\Rightarrow \quad & \mathrm{AB}+\mathrm{CD}=\mathrm{BC}+\mathrm{DA}
\end{aligned}
$$

Q55. A circle is touching the side BC of $\triangle \mathrm{ABC}$ at P and touching $A B$ and $A C$ prodced at \mathbf{Q} and \mathbf{R} respectively. Prove that $\mathbf{A Q}=\frac{1}{2}$ (Perimeter of $\Delta \mathbf{A B C}$).

Sol. Since tangents from an exterior point to a circle are equal in length.
$\therefore \quad \mathrm{BP}=\mathrm{BQ} \quad[$ Tangents from B$]$
$\mathrm{CP}=\mathrm{CR} \quad$ [Tangents from C]
and $\quad \mathrm{AQ}=\mathrm{AR}$
[Tangents from A]
From (iii), we have

$$
\begin{aligned}
& \mathrm{AQ}=\mathrm{AR} \quad \Rightarrow \quad \mathrm{AB}+\mathrm{BQ}=\mathrm{AC}+\mathrm{CR} \\
\Rightarrow \quad & \mathrm{AB}+\mathrm{BP}=\mathrm{AC}+\mathrm{CP}[\mathrm{Using} \text { (i) and (ii) }]
\end{aligned}
$$

Now, perimeter of $\triangle \mathrm{ABC}=\mathrm{AB}+\mathrm{BC}+\mathrm{AC}$

$$
\begin{aligned}
& =A B+(B P+P C)+A C \\
& =(A B+B P)+(A C+P C) \\
& =2(A B+B P) \quad[\text { Using (iv) }] \\
& =2(A B+B Q)=2 A Q \quad[\text { Using (i) }]
\end{aligned}
$$

$\therefore \quad \mathrm{AQ}=\frac{1}{2}($ Perimeter of $\Delta \mathrm{ABC})$
Q56. Prove that the lengths of two tangents drawn from an external point to a circle are equal.

Sol. Given : AP and AQ are two tangents from a point A to a circle C (O, r)
To prove : AP = AQ
Construction : Join OP, OQ and OA.
Proof : In order to prove that $\mathrm{AP}=\mathrm{AQ}$, we shall first prove that $\Delta \mathrm{OPA} \cong \triangle \mathrm{OQA}$.
Through the point of contact.
$\therefore \quad \mathrm{OP} \perp \mathrm{AP}$ and $\mathrm{OQ} \perp \mathrm{AQ}$
$\Rightarrow \quad \angle \mathrm{OPA}=\angle \mathrm{OQA}=90^{\circ}$
Now, in right triangles OPA and OQA, we have

OP	$=\mathrm{OQ}$		$[$ Radii of a circle $]$
	$\angle \mathrm{OPA}$	$=\angle \mathrm{OQA}$	
and	OA	$=\mathrm{OA}$	
Each $\left.90^{\circ}\right]$			

So, by RHS-criterion of congruence, we get

$$
\Delta \mathrm{OPA} \cong \mathrm{OQA} \Rightarrow \mathrm{AP}=\mathrm{AQ} \quad[\mathrm{CPCT}]
$$

Hence, lengths of two tangents from an external point are equal.

Q57. Prove that the parallelogram circumscribing a circle is a rhombus.

Sol. Let ABCD be a parallelogram such that its sides touch a circle with centre O .
We know that the tangents to a circle from an exterior point are equal in length.
Therefore, we have

$\mathrm{AP}=\mathrm{AS}$	$[$ Tangents from A$]$	-- -(i)
$\mathrm{BP}=\mathrm{BQ}$	$[$ Tangents from B$]$	-- -(ii)
$\mathrm{CR}=\mathrm{CQ}$	$[$ Tangents from C$]$	-- -(iii)
And	$\mathrm{DR}=\mathrm{DS}$	$[$ Tangents from D$]$

Adding (i), (ii), (iii) and (iv), we have

$$
\begin{aligned}
& (A P+B P)+(C R+D R)=(A S+D S)+(B Q+C Q) \\
& A B+C D=A D+B C \\
& A B+A B=B C+B C \quad[\because A B C D \text { is a parallelogram } \therefore A B=C D, B C=D A] \\
& 2 A B=2 B C \quad \Rightarrow \quad A B=B C
\end{aligned}
$$

Thus, $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
Hence, ABCD is a rhombus.
Q58. In Fig, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangents $A B$ with point of contact C intersecting $X Y$ at $A \angle X^{\prime} Y^{\prime}$ at B. Prove that $\angle \mathrm{AOB}=90^{\circ}$.

Sol. Join OC. In $\triangle \mathrm{APO}$ and $\triangle \mathrm{ACO}$, we have
$\mathrm{AP}=\mathrm{AC}$
$\mathrm{AO}=\mathrm{OA} \quad[$ Common $]$
$\mathrm{PO}=\mathrm{OC}$
[Radii of the same circle]
(By SSS criterion of congruence)
$\therefore \quad \Delta \mathrm{APO} \cong \triangle \mathrm{ACO} \quad$ (By SSS criterion of congruence)
(CPCT)
$\therefore \quad \angle \mathrm{PAO}=\angle \mathrm{CAO} \quad(\mathrm{CPCT})$
$\Rightarrow \quad \angle \mathrm{PAC}=2 \angle \mathrm{CAO}$
hat
Similarly, we can prove that

$$
\begin{aligned}
\Delta \mathrm{OQB} & \cong \triangle \mathrm{OCB} \\
\therefore \quad \angle \mathrm{QBO} & =\angle \mathrm{CBO} \quad \Rightarrow \quad \angle \mathrm{CBQ}=2 \angle \mathrm{CBO}
\end{aligned}
$$

Now, $\angle \mathrm{PAc}+\angle \mathrm{CBQ}=180^{\circ} \quad[$ Sum of interior angles on the same side of transversal is 180°]
$\Rightarrow \quad 2 \angle \mathrm{CAO}+2 \angle \mathrm{CBO}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{CAO}+\angle \mathrm{CBO}=90^{\circ}$
$\Rightarrow \quad 180^{\circ}-\angle \mathrm{AOB}=90^{\circ} \quad\left[\because \angle \mathrm{CAO}+\angle \mathrm{CBO}+\angle \mathrm{AOB}=180^{\circ}\right]$
$\Rightarrow \quad 180^{\circ}-90^{\circ}=\angle \mathrm{AOB} \Rightarrow \angle \mathrm{AOB}=90^{\circ}$

CHAPTER-8 : TRIGONOMETRY

Q59. If $\sec \theta=x+\frac{1}{4 x}$, prove that $\boldsymbol{\operatorname { s e c }} \theta+\boldsymbol{\operatorname { t a n }} \theta=\mathbf{2 x}$ or $\frac{1}{2 x}$

Sol. Let $\sec \theta=\tan \theta=\lambda$
We know that, $\sec ^{2} \theta-\tan ^{2} \theta=1$

$$
\begin{array}{ll}
(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1 & \Rightarrow \lambda(\sec \theta-\tan \theta)=1 \\
\sec \theta-\tan \theta=\frac{1}{\lambda} & -- \text {-(ii) } \tag{ii}
\end{array}
$$

Adding equations (i) and (ii), we get

$$
\begin{aligned}
& 2 \sec \theta=\lambda+\frac{1}{\lambda} \quad \Rightarrow \quad 2\left(x+\frac{1}{\lambda}\right)=\lambda+\frac{1}{\lambda} \\
& \Rightarrow \quad 2 x+\frac{1}{2 x}=\lambda+\frac{1}{\lambda}
\end{aligned}
$$

om comparing, we get $\lambda=2 \mathrm{x}$ or $\lambda=\frac{1}{2 x}$
$\Rightarrow \quad \sec \theta+\tan \theta=2 \mathrm{x}$ or $\frac{1}{2 \mathrm{x}}$

Q60. Find an acute angle θ, when $\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\frac{1-\sqrt{3}}{1+\sqrt{3}}$

Sol. We have

$$
\frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\frac{1-\sqrt{3}}{1+\sqrt{3}} \quad \Rightarrow \quad \frac{\frac{\cos \theta-\sin \theta}{\cos \theta}}{\frac{\cos \theta+\sin \theta}{\cos \theta}}=\frac{1-\sqrt{3}}{1+\sqrt{3}}
$$

[Dividing numerator \& denominator of the LHS by $\cos \theta$]
$\Rightarrow \quad \frac{1-\tan \theta}{1+\tan \theta}=\frac{1-\sqrt{3}}{1+\sqrt{3}}$
On comparing we get

$$
\Rightarrow \quad \tan \theta=\sqrt{3} \quad \Rightarrow \quad \tan \theta=\tan 60^{\circ} \quad \Rightarrow \quad \theta=60^{\circ}
$$

Q61. If $\operatorname{cosec} \theta=\frac{13}{12}$, evaluate $\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}$

Sol. Given $\operatorname{cosec} \theta=\frac{13}{12}$, then $\sin \theta=\frac{12}{13}$

$$
\begin{aligned}
& \cos ^{2} \theta=1-\sin ^{2} \theta=1-\left(\frac{12}{13}\right)^{2}=\frac{169-144}{169}=\frac{25}{169} \\
& \cos \theta=\frac{5}{13}
\end{aligned}
$$

Now, $\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}=\frac{2 \times \frac{12}{13}-3 \times \frac{5}{13}}{4 \times \frac{12}{13}-9 \times \frac{5}{13}}=\frac{24-15}{48-45}=\frac{9}{3}=3$

Q62. Prove that $\frac{\tan \mathrm{A}}{1+\sec \mathrm{A}}-\frac{\tan \mathrm{A}}{1-\sec \mathrm{A}}=2 \operatorname{cosec} \mathrm{~A}$
Sol. LHS $\frac{\tan A}{1+\sec A}-\frac{\tan A}{1-\sec A}$

$$
\begin{aligned}
& =\frac{\tan A(1-\sec A)-\tan A(1+\sec A)}{(1+\sec A)(1-\sec A)} \\
& =\frac{\tan A-\tan A \sec A-\tan A-\tan A \sec A}{1-\sec ^{2} A} \\
& =\frac{-2 \tan A \sec A}{1-\sec ^{2} A}=\frac{2 \tan A \sec A}{\sec ^{2} A-1} \\
& =\frac{2 \tan A \sec A}{\tan ^{2} A} \\
& =\frac{2 \sec A}{\tan A}=\frac{\frac{2}{\cos A}}{\frac{\sin A}{\cos A}}=\frac{2}{\sin A}=2 \operatorname{cosec} A=\text { RHS }
\end{aligned}
$$

CHAPTER -9: HEIGHT AND DISTANCE

Q63. The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is $\mathbf{6 m}$.

Sol. Let OA be the tower of height h metre and P, Q be the two points at distance of 9 m and 4 m respectively from the base of the tower.

Now, we have $\quad \mathrm{OP}=9 \mathrm{~m}, \mathrm{OQ}=4 \mathrm{~m}$,
Let $\angle A P O=\theta, \angle A Q O=\left(90^{\circ}-\theta\right)$
and $\quad \mathrm{OA}=\mathrm{h}$ metre (Fig)
Now, in \triangle POA, we have

$$
\begin{equation*}
\tan \theta=\frac{O A}{O P}=\frac{h}{9} \quad \Rightarrow \tan \theta=\frac{h}{9} \tag{i}
\end{equation*}
$$

Again, in $\triangle \mathrm{AQO}$, we have

$$
\begin{equation*}
\tan \left(90^{\circ}-\theta\right)=\frac{O A}{O Q}=\frac{h}{4} \quad \Rightarrow \cot \theta=\frac{h}{4} \tag{ii}
\end{equation*}
$$

Multiplying (i) and (ii), we have

$$
\tan \theta \times \cot \theta=\frac{\mathrm{h}}{9} \times \frac{\mathrm{h}}{4} \quad \Rightarrow 1=\frac{h^{2}}{36} \quad \Rightarrow h^{2}=36
$$

$$
h= \pm 6
$$

Height cannot be negative
Hence, the height of the tower is 6 metre.
Q64. The shadow of a tower standing on a level ground is found to be 40 m longer when the Sun's altitude is 30° than when it is 60°. Find the height of the tower.

Sol. In fig. AB is the tower and BC is the length of the shadow when the Sun's altitude is 60°, i.e., the angle of elevation of the top of the tower from the tip of the shadow is 60° and DB is the length of the shadow, when the angle of elevation is 30°.

Now, let $A B$ be $h \mathrm{~m}$ and BC be $\mathrm{x} m$.
According to the question, DB is 40 m longer than BC .
So, $B D=(40+x) m$

Now, we have two right triangles ABC and ABD
In $\triangle \mathrm{ABC}, \quad \tan 60^{\circ}=\frac{A B}{B C}$ or $\sqrt{3}=\frac{h}{x}$

$\Rightarrow \quad \sqrt{3}=h$
In $\triangle \mathrm{ABD}, \quad \tan 30^{\circ}=\frac{A B}{B D}$
i.e. $\quad \frac{1}{\sqrt{3}}=\frac{4}{x+40}$

Using (i) in (ii), we get $(x \sqrt{3}) \sqrt{3}=\mathrm{x}+40$, i.e. $3 \mathrm{x}=\mathrm{x}+40$
i.e., $\quad x=20$
[From (i)]
So, $\quad h=20 \sqrt{3}$

Therefore, the height of the tower is $20 \sqrt{3} \mathrm{~m}$.
Q65. From a point on a bridge across a river, the angles of depression of the banks on opposite sides of the river are 30° and 45° respectively. If the bridge is at a height of 3 m from the banks, find the width of the river.

Sol. In Fig. A and B represent points on the bank on opposite side of the river, so that AB is the width of the river. P is a point on the bridge at a height of 3 m , i.e., $\mathrm{DP}=3 \mathrm{~m}$. We are interested to determine the width of the river, which is the length of the side $A B$ of the Δ APB.

In the right $\triangle \mathrm{ADP}, \angle \mathrm{A}=30^{\circ}$
So, $\quad \tan 30^{\circ}=\frac{P D}{A D}$
i.e., $\quad \frac{1}{\sqrt{3}}=\frac{3}{A D} \quad$ or $\quad A D=3 \sqrt{3} \mathrm{~m}$

Also, in right $\triangle \mathrm{PDB}$,

$$
\frac{P D}{A D}=\tan 45^{\circ} \quad \Rightarrow \quad \frac{3}{D B}=1
$$

$$
\therefore \quad \mathrm{DB}=3 \mathrm{~m}
$$

Now, $\mathrm{AB}=\mathrm{BD}+\mathrm{AD}=3+3 \sqrt{3}=3(1+\sqrt{3}) \mathrm{m}$
Therefore, the width of the river is $3(\sqrt{3}+1) \mathrm{m}$

