# DELHI PUBLIC SCHOOL, JAMMU <br> ASSIGNMENT,HALF YEARLY EXAMINATION (2019-20) 

Class: IX
Sub: Maths

TOPICS:- Chapter 1- Number System. (10 marks)

Chapter 2- Polynomials. (15 marks)
Chapter 3-Coordinate Geometry. (5 marks)
Chapter 4- Lines and Angles. (20 marks)

Chapter 5- Triangles. (20 marks)
Chapter 6- Heron's Formula (10)

## Section 1 ( MCQ type)

Q1. Which of following numbers can be represented as non-terminating, repeating decimals?
(a) $\frac{39}{24}$
(b) $\frac{3}{16}$
(c) $\frac{3}{11}$
(d) $\frac{137}{25}$

Q2. The number $0 . \overline{3}$ in the form $\frac{p}{q}$, where $p$ and $q$ are integers and $q \neq 0$, is
(a) $\frac{33}{100}$
(b) $\frac{3}{10}$
(c) $\frac{1}{3}$
(d) $\frac{3}{100}$

Q3. Which of the following is irrational?
(a) 0.15
(b) 0.01516
(c) $0 . \overline{1516}$
(d) 0.501500150005 ..

Q4. An irrational number between 2 and 2.5 is
(a) $\sqrt{11}$
(b) $\sqrt{5}$
(c ) $\sqrt{22.5}$
(d) $\sqrt{12.5}$

Q5. If $\triangle \mathrm{ABC} \cong \Delta \mathrm{PQR}$ and $\triangle \mathrm{ABC}$ is not congruent to $\triangle \mathrm{RPQ}$ then which of following is not true
(a) $B C=P Q$
(b) $A C=P R$
(c) $A B=P Q$
(d) $Q R=B C$

Q6. If $8^{x+1}=64$, what is the value of $3^{2 x+1}$ ?
(a) 1
(b) 3
(c) 9
(d)27

Q7. If $\left(2^{3)^{2}}=4^{x}\right.$, then $3^{x}=$
(a) 3
(b) 6
(c) 9
(d) 27

Q8. If $\mathrm{x}+\frac{1}{x}=5$, then $x^{2}+\frac{1}{x^{2}}=$
(a) 25
(b) 10
(c) 23
(d) 27

Q9. If $\mathrm{a}+\mathrm{b}+\mathrm{c}=9$ and $\mathrm{ab}+\mathrm{bc}+\mathrm{ca}=23$, then $a^{2}+b^{2}+c^{2}=$
(a) 35
(b) 58
(c) 127
(d) none of these

Q10. $(x+y)^{3}-(x-y)^{3}$ can be factorized as
(a) $2 y\left(3 x^{2}+y^{2}\right)$
(b) $2 x\left(3 x^{2}+y^{2}\right)$
(c) $2 y\left(3 y^{2}+x^{2}\right)$
(d) $2 x\left(x^{2}+3 y^{2}\right)$

Q11. If $\mathrm{x}+2$ is a factor of $x^{2}+\mathrm{mx}+14$, then $\mathrm{m}=$
(a) 7
(b) 2
(c) 9
(d) 14

Q12. If $\mathrm{x}+1$ is a factor of the polynomial $2 x^{2}+\mathrm{kx}$, then $\mathrm{k}=$
(a) -2
(b) -3
(c) 4
(d) 2

Q13. The ordinate of any point on $x$-axis is
(a) 0
(b) 1
(c) -1
(d) any number

Q14.The perpendicular distance of the point $P(4,3)$ from $y$-axis is
(a) 4
(b) 3
(c) 5
(d) none of these

Q15. Side $B C$ of a triangle $A B C h$ has been produced to a point $D$ such that $\angle A C D=120^{\circ}$ .If $\angle B=\frac{1}{2} \angle A$, then $\angle A=$
(a) $80^{\circ}$
(b) $75^{\circ}$
(c) $60^{\circ}$
(d) $90^{\circ}$

Q16. An exterior angle of a triangle is $108^{\circ}$ and its interior opposite angles are in ratio 4:5. The Angles of the triangles are
(a) $48^{\circ}, 60^{\circ}, 72^{\circ}$
(b) $50^{\circ}, 60^{\circ}, 70^{\circ}$
(c) $52^{\circ}, 56^{\circ}, 72^{\circ}$
(d) $42^{\circ}, 60^{\circ}, 76^{\circ}$

Q17. In a $\triangle A B C$, If $A B=A C$ and $B C$ produced to $D$ such that $\angle A C D=100^{\circ}$ then $\angle A=$
(a) $20^{\circ}$
(b) $40^{\circ}$
(c) $60^{\circ}$
(d) $80^{\circ}$

Q18. The sides of triangles are $7 \mathrm{~cm}, 9 \mathrm{~cm}, 14 \mathrm{~cm}$. Its area is
(a) $12 \sqrt{5} \mathrm{~cm}^{2}$
(b) $12 \sqrt{3} \mathrm{~cm}^{2}$
(c) $24 \sqrt{5} \mathrm{~cm}^{2}$
(d) $63 \mathrm{~cm}^{2}$

Q19. The sides of triangles are $50 \mathrm{~cm}, 78 \mathrm{~cm}, 112 \mathrm{~cm}$. Its smallest altitude is
(a) 20 cm
(b) 30 cm
(c) 40 cm
(d) 50 cm

Q 20. If every side of a triangle is doubled, then increase in area of triangle, is
(a) $100 \sqrt{5} \%$
(b) $200 \%$
(c) $300 \%$
(d) $400 \%$

## Section B (Very Short Type)

Q21. Prove that sum of angles of triangle is $180^{\circ}$
Q22. Prove that when two lines intersect then vertically opposite angles are equal
Q23. Prove that in a triangle angle opposite to equal sides are equal.
Q24. $A D$ is an altitude of Isosceles triangle $A B C$ in which $A B=A C$. Show that $A D$ bisects $B C$
And AD bisects $\angle A$.
Q25. Find area of triangle two sides of which are 18 cm and 10 cm and perimeter $42 \mathrm{~cm} .(2 \mathrm{M})$
Q26. The sides of triangle are in ratio $13: 14: 15$ and its perimeter is 84 cm . Find area of
Triangle.

## Section C (Short Type)

Q27. If of $x^{2}+\frac{1}{x^{2}}=79$. Find the value
(i) $x^{3}+\frac{1}{x^{3}}$
ii) $x^{3}-\frac{1}{x^{3}}$

Q28. If $a+b=10 \& a b=16$, find $a^{2}-a b+b^{2}$ and $a^{2}+a b+b^{2}$.
Q29. Plot $A(0,2), B(-2.5,0)$ and $C(3.5,0)$ in graph and find area of triangle $A B C$.
Q30. .PQ\| ST, $\angle P Q R=110^{\circ}$ and $\angle R S T=130^{\circ}$, find $\angle Q R \mathrm{~S}$.
P


Q31. $\angle X=62^{\circ}$ and $\angle X Y Z=54^{\circ}$. IF YO and ZO are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of triangle $X Y Z$, Find $\angle O Z Y$ and $\angle Y O Z$.
Q32. Prove that in triangle $A B C, A B+B C>A C$.
Q33. In isosceles triangle $A B C$ with $A B=A C$. $D$ and $E$ are points on $B C$ such that $B E=C D$. Prove that $A D=A E$.


Q34. A field is in shape of a trapezium whose parallel sides are 25 m and 10 m . The

Non parallel sides are 14 m and 13 m . find area of field.

## Section D ( Long Type)

Q35. Represent $\sqrt{6.5}$ or $\sqrt{9.3}$ on number line and give justification.
Q36. Expand (i) $\left(x^{2}+y^{2}-z^{2}\right) .{ }^{2}-\left(x^{2}-y^{2}+z^{2}\right) .{ }^{2}$
ii) $\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right) .^{2}$

Q37. Side QR of $\triangle \mathrm{PQR}$ is produced to S . If bisector of $\angle P Q R$ and $\angle P R S$ meet at
T , then prove that $\angle Q T R=\frac{1}{2} \angle Q P R$.
Q38. Two sides $A B$ and $A C$ of $\triangle A B C$ are produced to $P$ and $Q$ respectively. The
Bisectors of $\angle \mathrm{PBC}$ and $\angle \mathrm{QCB}$ intersect at O , prove that $\angle \mathrm{BOC}=90^{\circ}-\frac{1}{2} \angle A$
Q39. Prove that two triangles are congruent if two angles and included side of One triangle are equal to two angles and included side of other triangle.
Q40. In given figure $A C=A E, A B=A D$ $\angle B A D=\angle E A C$, show that $B C=D E$


