CLASS:VIII

SUBJECT :MATHS

TOPIC: 1. CONSTRUCTIION OF QUADRILATERALS

2. ALGEBRIC EXPRESSIONS \&IDENTITIES

3. DIRECT AND INVERSE VARIATIONS

SECTION-A
A. Multiple Choice Questions

1. Degree of Polynomial $5 x^{3}-4 x^{2} y^{2}+7 x^{2}-2$ is :
a. 1
b. 2
c. 3
d. 4
2. 4 men can complete a job in 3 days.How many days are required to complete same job by 3 men.
a. 2
b. 4
c. 6
d. 8
3. Diagonals of square
a. Are perpendicular
b. are equal
c. bisect each other
d. All of these
4. If two quantities a and b vary inversely with each other ,then
a. a X b remains constant
b. $a+b$ remains constant
c. a-b remains constant
d. $a \div b$ remains constant
5. The sum of $a-b+a b, b-c+b c, c-a+a c$ is:
a. $a+b+c$
b. $a b+b c+c a$
c. $a^{2}+b^{2}+c^{2}$
d. none of these

SECTION-B

1. Identify the terms and their coefficients for each of the following
i) $7 x^{2} y-3 y$
ii) $3 x^{2} y^{2}-z+6$
iii) $6-x y^{2}+5 z^{2}$
iv) $\frac{x^{2}}{2}-\frac{y^{2}}{3}+4 x y$
2. Classify the following terms as monomial, binomial or trinomial. Also find out which polynomial does not fit in any one of following category.
i) $3 x y+y$
ii) 96
iii) $4 x+7 x y$
iv) $3 x-7 y^{2}+1$
v) $x^{2}+x y+y^{2}-7$
vi) $x y z$
vii) $2 a-b$
viii) $7 \mathrm{a}-7 \mathrm{a}^{2}$
ix) $4 x^{2}-5 x-2$
3. Subtract
i) $6 x^{2} y^{2}-7 x^{2} y+4 x y^{2}+11$ from $5 x^{2} y^{2}-3 x^{2} y+5 x y^{2}+7$
4. Add $2 x y+3 y z-6 x z, 4 x y-2 y z+7 x z$ and $-x y-2 y z+4 x z$
5. What should be taken away from $5 x^{2}+4 y^{2}+10 x y$ to obtain $2 x^{2}+6 y^{2}+9 x y$
6. Find the Product
i) $a^{2} b,-2 a^{3} b^{2}, a b$
ii) $4 m n^{2}, 2 m^{2} n^{2},-3 m n^{3}$
iii) $\left(\frac{3}{2} x^{3} y^{2}\right),\left(\frac{-2}{3} x y\right),\left(2 x y^{3}\right)$
7. Find the product of $x^{2} y X(-2 x y z) X x y^{3}$ also verify the result when $x=2 y=1 z=3$

SECTION-C
8. Simplify
i) $6 x(x-3)+x(2-5 x)+3 x^{2}$
ii) $4 x y(y-x)-3 y^{2}\left(x^{2}-x\right)-5 x^{2}\left(y-y^{2}\right)$
9. Find the following products
i) $\left(x^{2}-x y+2 y^{2}\right)(x+2 y)$
ii) $\left(x^{2}-3 x+4\right)(4 x+1)$
10. Evaluate using identities
i) $(104)^{2}$
ii) 75×65
iii) 101 X 99
iv) $(a+2)(a-2)\left(a^{2}+4\right)$
v) $\left(x^{2}+1\right)(x-1)(x+1)\left(x^{4}+1\right)$
vi) 102 X 103
vi) 66 X 68
viii) $(7 x-4)^{2}$
ix) $(41+5 m)^{2}$
x) $(2 x+5 y)(2 x-5 y)$

SECTION-D

11. Simplify
i) $(2 x-1)^{2}-(x-1)^{2}$
ii) $\underline{176 \times 176-124 \times 124}$ 52
iii) $\underline{324 \times 324-276 \times 276}$ 48
iv) $(12.9)^{2}-(7.9)^{2}$
12. Show that

$$
\frac{(6 a-5 b)^{2}-(6 a+5 b)^{2}}{a b}=-120
$$

CONSTRUCTIION OF QUADRILATERALS

1. Construct a quadrilateral $\mathrm{PQRS} R S=5 \mathrm{~cm}, \mathrm{PR}=\mathrm{PS}=6 \mathrm{~cm}, \mathrm{QR}=7.5 \mathrm{~cm} \mathrm{QS}=10 \mathrm{~cm}$.
2. Construct a quadrilateral ABCD in which $\mathrm{AB}=3.5 \mathrm{~cm} \quad \mathrm{BC}=4 \mathrm{~cm} \mathrm{CD}=4.5 \mathrm{~cm} \quad \mathrm{AC}=5 \mathrm{~cm}$ and $\mathrm{BD}=5.5 \mathrm{~cm}$
3. Construct a quadrilateral $\mathrm{AB}=5.6 \mathrm{~cm}, \mathrm{BC}=4.1 \mathrm{~cm}, \mathrm{CD}=4.4 \mathrm{~cm}, \mathrm{AD}=3.3 \mathrm{~cm}$ and $\angle \mathrm{A}=75^{\circ}$
4. Construct a quadrilateral ABCD in which $\mathrm{AB}=3.5 \mathrm{~cm}, \mathrm{BC}=3.4 \mathrm{~cm}, \mathrm{CD}=4.7 \mathrm{~cm}, \mathrm{AD}=5.2 \mathrm{~cm}$ and $/ \mathrm{B}=80^{\circ}$.
5. Construct a quadrilateral TRUE in which $T R=4 \mathrm{~cm}, R U=5 \mathrm{~cm}, U E=4.5 \mathrm{~cm}, R=60^{\circ}$ and $U=90^{\circ}$
6. Construct a quadrilateral PQRS , where $\mathrm{PQ}=4 \mathrm{~cm}, \mathrm{QR}=5 \mathrm{~cm}, \mathrm{P}=60^{\circ}$, $\mathrm{Q}=100^{\circ}$ and $\mathrm{R}=75^{\circ}$
7. Construct a IIgm ABCD where $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{CD}=4.5 \mathrm{~cm}$ and $\mathrm{BD}=7.5 \mathrm{~cm}$
8. Construct a rhombus ABCD , length of whose diagonals are 6 cm and 5 cm .
9. Construct a rhombus with side 4.5 cm and diagonal 6 cm .

DIRECT AND INVERSE VARIATIONS

1. Car is moving at the average speed of $60 \mathrm{~km} / \mathrm{hr}$. How much distance would it cover in 20 min ?
2. 18 men can dig a $7 \frac{1}{2} \mathrm{~m}$ long trench in one day. How much men should be employed for digging 20 m long trench of the same type in one day?
3. A bus travels 12.5 km in 15 minutes. If the speed remains the same, How far can it travel in 4 hours 45 minutes?
4. 36 men can do a piece of work in 25 days, If work is to be finished in 60 days. How many men will be required?
5. In a hostel, 100 students had provision for 130 days. After 10 days, 20 students left the hostel. How long would the remaining food last?
6. A garrison of 620 men had provision for 42 days. A reinforcement of 220 men arrived. How long the food will last?
